PCI4520
 DM7520
 SDM7540
 SDM8540

User's Manual

PCI4520-High-speed Bus Master 12bit Analog Data Acquisition Slot Board for IBM PC with PCI bus

DM7520 - High-speed Bus Master 12bit Analog Data Acquisition PC/104Plus Board with McBSP for DSP communication

SDM7540 - High-speed Bus Master 12bit Analog Data Acquisition PC/104-Plus Board with SmartCal

SDM8540 - High-speed Bus Master 12bit Analog Data Acquisition PCI/104 Board with SmartCal

SDM8540/7540/DM7520/PCI4520 USER MANUAL

103 Innovation Blvd
State College, PA 16803-0906
Phone: +1-814-234-8087
FAX: +1-814-234-5218

E-mail
sales@rtd.com
techsupport@rtd.com
Web Site
http://www.rtd.com

Revision History

11.15.01 1.0 New

11.27.01 1.1 with Ver 11 EPLD for free running D/A clock to be software compatible with the previous versions
01.07.02 1.2 McBSP control address fix
04.11.02 1.3 DM7530 extension
05.06.02 1.4 DM7530 EPLD ver12. For DM7530
06.28.02 1.5 PCI4520 Timer-counter description fix
01.03.03 1.6 Extension of the sample counter description.
03.28.05 1.7 SDM7540 extension
09.01.06 Rev. C included picture of DM7520HR connector locations. Corrected addressing mistakes in digital I/O map for LAS0. Removed the (now defunct) DM7530.
10.31.06 Added SDM8540 to title block, fixed BDM number
2.15.07 Added figure 12.1 and fixed figure 2.2.4
10.20.09 Modified calibration section

Published by:
RTD Embedded Technologies Inc.
103 Innovation Boulevard
State College, PA 16803
Copyright 2001 by RTD Embedded Technologies Inc.
All rights reserved
Printed in U.S.A.

The RTD Embedded Technologies Inc. Logo is a registered trademark of RTD Embedded Technologies Inc. dspModule, cpuModule, and utilityModule are trademarks of RTD Embedded Technologies Inc.
$\mathrm{PC} / 104$ is a registered trademark of $\mathrm{PC} / 104$ Consortium. All other trademarks appearing in this document are the property of their respective owners.

1. OVERVIEW 11
2. OVERVIEW 11
1.1. ANALOG-TO-DIGITAL CONVERSION 12
1.2. Digital-to-Analog Conversion 13
1.3. Timer/Counters 13
1.4. Digital I/O 13
1.5. High-Speed Digital Input 13
1.6. SyncBus 14
1.7.McBSP Multi-channel Buffered Serial Port 14
1.8. What Comes With Your Board 14
1.9. Board Accessories 14
1.10. Hardware Accessories 14
1.11. Using This Manual 14
1.12. When You Need Help 15
3. INSTALLATION 16
2.1. Board Installation 16
2.2. External I/O CONNECTIONS 17
2.3. Connecting the Analog Input Pins 23
2.3.1. Ground Referenced Single-Ended (GRSE) input mode 24
2.3.2.Non Referenced Single-Ended (NRSE) input mode 25
2.3.3. Differential (DIFF) input mode 26
2.4. Connecting the Analog Outputs 27
2.5. CONNECTING THE TIMER/COUNTERS AND DIGITAL I/O 27
2.6. Connecting the SyncBus 27
2.7. CONNECTING THE MCBSP 28
2.8. CONNECTING THE DSP JTAG 28
2.9. JUMPER DESCRIPTIONS 28
4. HARDWARE DESCRIPTION 29
3.1. The Operation of Analog Input and High-Speed Digital Input Section 29
3.1.1. Overall Description 29
3.1.2 Channel Gain Latch (CGL) and Channel Gain Table (CGT) 29
3.1.3. A/D Converter 31
3.1.4. A/D FIFO - Sample Buffer 31
3.1.5. Data Transfer 31
3.1.6. High-Speed Digital Input section 32
3.2. The Operation of Analog Output 32
3.3. Timer/ Counters 33
3.4. Digital I/O 33
3.5. SyncBus 33
5. ADDRESS SPACES OF PCI4520/DM7520/SDM7540/8540 35
6. 7. Local Address Space 0 (LAS0) - Runtime Area 36
4.1.1. 000h: Read Master / Target Only mode jumper (JP1) / Firmware version number - DM7520/SDM7540/8540 Only (Read only) 38
4.1.2. 008h: User Input read / User Output Write (Read/write) 38
4.1.3. 010h: FIFO Status Register / A/D Conversion Start (Read/write) 39
4.1.4. O14h: Software update D/A1 (Write only) 40
4.1.5. 018h: Software update D/A2 (Write only) 40
4.1.6. 024h: Simultaneous Software Update D/A1 and D/A2 (Write only) 40
4.1.7. 028h: Pacer Clock Software trigger (Read/Write) 40
4.1.8. 02Ch: Pacer/Burst Clock Timer Status Register / Software High-Speed Input Sample command (Read/Write) 40
4.1.9. 030h: Interrupt Status/Mask Register (Read/Write) 41
4.1.10. 034h Interrupt Clear Register (Read/Write) 43
4.1.11. 038h Interrupt Overrun Register (Read/Write) 44
4.1.12. 040h, Pacer Clock Counter (Read/Write). 44
4.1.13. 044h, Burst Clock Counter (Read/Write) 44
4.1.14. 048h, A/D Sample Counter (Read/Write) 45
4.1.15. 04Ch, D/Al Update Counter (Read/Write). 45
4.1.16. 050h, D/A2 Update Counter (Read/Write) 45
4.1.17. 054h, Delay Counter (Read/Write) 45
4.1.18. 058h, About Counter (Read/Write). 46
4.1.19. 05Ch, DAC Clock Counter (Read/Write). 46
4.1.20. 060h, 064h, 068h: User Timer/Counter 0, 1, 2 (Read/Write) 46
4.1.21. 06Ch User Timer/Counter control word (Write Only) 47
4.1.22. 070h, Digital I/O chip Port 0, Bit Programmable Port (Read/Write) 47
4.1.23. 074h, Digital I/O chip Port 1, Byte Programmable Port (Read/Write). 47
4.1.24. 078h, Read/Program Port 0 Direction/ Mask/ Compare Registers (Read/Write) 48
4.1.25. 07Ch, Read Digital IRQ Status/Program Digital Mode (Read/Write) 49
4.1.26. OBOh, Command Register (Read / Write) SDM7540/8540 ONLY 49
4.1.27. OEOh, Analog Connector DIO Mask (Read / Write) 50
4.1.28. OE4h, Analog Connector DIO Data (Read / Write). 50
4.1.29. OE8h, Analog Connector DIO Direction (Read / Write) 50
4.1.30. 0ECh, Analog Connector DIO Interrupt Status (Read Only) 50
1. 2. Local Address Space 0 (LAS0) - Setup Area. 52
4.2.1. 100h, Software Reset of the board (Write Only). 62
4.2.2. 104h, DMAO Request Source Select (Write Only) 62
4.2.3. 108h, DMA1 Request Source Select (Write Only) 62
4.2.4. 1CCh, Reset DMA0 Request machine (Write Only) 62
4.2.5. 1D0h, Reset DMA1 Request machine (Write Only). 62
4.2.6. 10Ch, A/D Conversion Signal Select (Write Only). 63
4.2.7. 110h, A/D Burst Clock start trigger select (Write Only) 63
4.2.8. 114h, Pacer Clock start trigger select (Write Only) 63
4.2.9. 118h, Pacer Clock Stop Trigger select (Write Only) 64
4.2.10. 11Ch, About Counter Stop Enable (Write Only) 64
4.2.11. 120h, Pacer Start Trigger Mode select (Write Only). 64
4.2.12. 124h, Sampling Signal for High Speed Digital Input Select (Write Only) 65
4.2.13. 128h, Clear High Speed Digital Input FIFO (Write Only) 65
4.2.14. 12Ch, Clear A/D FIFO (Write Only). 65
4.2.15. 130h, Write ADC channel gain table (Write Only). 65
4.2.16. 134h, Write ADC channel gain latch (Write Only). 66
4.2.17. 138h, Write Digital table (Write Only). 66
4.2.18. 13Ch, Enable Channel Gain Table (Write Only) 66
4.2.19. 140h, Enable Digital Table (Write Only) 66
4.2.20. 144h, Table Pause enable (Write Only) 67
4.2.21. 148h, Reset Channel Gain Table (Write Only). 67
4.2.22. 14Ch, Clear Channel Gain Table (Write Only) 67
4.2.23. 150h, D/A1 output type I range (Write Only). 67
4.2.24. 154h, D/Al update source (Write Only) 67
4.2.25. 158h, D/A1 Cycle Mode (Write Only) 67
4.2.26. 15Ch, Reset D/A1 FIFO (Write Only) 67
4.2.27. 160h, Clear D/Al FIFO (Write Only) 67
4.2.28. 164h, D/A2 output type I range (Write Only) 68
4.2.29. 168h, D/A2 update source (Write Only) 68
4.2.30. 16Ch, D/A2 Cycle Mode (Write Only) 68
4.2.31. 170h, Reset D/A2 FIFO (Write Only) 68
4.2.32. 174h, Clear D/A2 FIFO (Write Only) 68
4.2.33. 178h, A/D Sample Counter Source Select (Write Only) 68
4.2.34. 180h, Pacer Clock Select (Write Only) 68
4.2.35. 184h, SyncBus 0 Source Select (Write Only) 69
4.2.36. 188h, Enable SyncBus 0 (Write Only) 69
4.2.37. 18Ch, SyncBus 1 Source Select (Write Only) 70
4.2.38. 190h, Enable SyncBus 1 (Write Only) 70
4.2.39. 198h, SyncBus 2 Source Select (Write Only) 70
4.2.40. 19Ch, Enable SyncBus 2 (Write Only) 70
4.2.41. 1A4h, External Trigger polarity select (Write Only) 70
4.2.42. 1A8h, External Interrupt polarity select (Write Only) 71
4.2.43. 1ACh, User Timer/Counter 0 Clock Select (Write Only) 71
4.2.44. 1B0h, User Timer/Counter 0 Gate Select (Write Only) 71
4.2.45. 1B4h, User Timer/Counter 1 Clock Select (Write Only). 71
4.2.46. 1B8h, User Timer/Counter 1 Gate Select (Write Only) 71
4.2.47. 1BCh, User Timer/Counter 2 Clock Select (Write Only) 72
4.2.48. 1C0h, User Timer/Counter 2 Gate Select (Write Only) 72
4.2.49. 1C4h, User Output 0 Signal Select (Write Only) 72
4.2.50. 1C8h, User Output 1 Signal Select (Write Only) 73
4.2.51. lECh, McBSP A/D FIFO control (Write Only) 73
4.2.52. 1FOh, McBSP D/A1 and D/A2 FIFO control (Write Only) 73
4.3. Local Address Space 1 (LAS1) 74
4.3.1. Oh, Read A/D FIFO (Read only). 75
4.3.2. 4h, Read High Speed Digital Input FIFO (Read only). 75
4.3.3. 8h, Write D/Al FIFO (Write only) 76
4.3.4. Ch, Write D/A2 FIFO (Write only) 76
1. A/D CONVERSION 78
5.1. Before Starting Conversions: Initializing the Board 78
5.1.1. Before Starting Conversions (single-channel mode): Programming Channel, Gain, Input Range and Type using Channel Gain Latch (CGL). 78
5.1.2. Before Starting Conversions (multi-channel mode): Programming the Channel-Gain Table (CGT)78
5.1.3. 16-Bit A/D Table 78
5.1.4. Channel Select, Gain Select, Input Range and Input Type. 79
5.1.5. Pause bit 79
5.1.6. D/Ax update bits 79
5.1.7. Skip bit 79
5.1.8. 8-Bit Digital Table. 80
5.1.9. Setting Up A/D part and Digital part of Channel Gain Table. 80
5.1.10. Using the Channel Gain Table for A/D Conversions 80
5.1.11. Channel-gain Table and Throughput Rates 81
5.2. A/D CONVERSION MODES 82
5.2.1. Start A/D Conversion signal. 82
5.2.2. Pacer Clock Start/Stop Trigger Select. 82
5.2.3. Types of Conversions 84
5.3. Reading the Converted Data 86
5.4. Using the A/D Data Markers. 87
5.5. Programming the Pacer Clock 87
5.6. Programming the Burst Clock 88
5.7. Programming the About Counter 88
5.7.1. Using the About Counter to Create Large Data Arrays 88
2. D/A CONVERSION 90
6.1. 1024 SAMPLE BUFFER 93
6.2. D/A Cycled or Not Cycled Mode 94
6.3. D/A Update Counters 94
6.4. D/A Data Markers 94
3. DATA TRANSFER USING DMA 95
7.1 Non-Chaining Mode DMA 95
7.2 Chaining Mode DMA 95
7.3 DMA Data Transfers 96
7.3.1 Demand Mode DMA 96
7.3.2. DMA Priority 96
7.4 DMA REGISTERS 97
7.4.1. (DMAMODE0; PCI: 80h) DMA Channel 0 Mode Register 98
7.4.2. (DMAPADR0; PCI:84h) DMA Channel 0 PCI Address Register 99
7.4.3. (DMALADR0; PCI:88h) DMA Channel 0 Local Address Register 99
7.4.4. (DMASIZ0; PCI:8Ch) DMA Channel 0 Transfer Size (Bytes) Register 99
7.4.5. (DMADPR0; PCI:90h) DMA Channel 0 Descriptor Pointer Register 99
7.4.6. (DMAMODE1; PCI:94h) DMA Channel 1 Mode Register 101
7.4.7. (DMAPADR1; PCI:98h) DMA Channel 1 PCI Address Register 102
7.4.8. (DMALADR1; PCI:9Ch) DMA Channel 1 Local Address Register. 102
7.4.9. (DMASIZ1; PCI:A0h) DMA Channel 1 Transfer Size (Bytes) Register 102
7.4.10. (DMADPR1; PCI:A4h) DMA Channel 0 Descriptor Pointer Register 103
7.4.11. (DMACSR0; PCI:A8h) DMA Channel 0 Command/Status Register. 103
7.4.12. (DMACSR1; PCI:A9h) DMA Channel 1 Command/Status Register 104
7.4.13. (DMAARB; PCI:ACh) DMA Arbitration Register. 104
7.4.14. (DMATHR; PCI:BOh) DMA Threshold Register. 105
4. INTERRUPTS 106
8.1. The Overall Interrupt Structure of PCI4520/DM7520/SDM7540/8540 106
8.1.1. The Interrupt Sources of PCI4520/DM7520/SDM7540/8540 106
8.1.2. The Interrupt Registers of PCI4520/DM7520/SDM7540/8540 107
8.2. The Operation of On-board Priority Interrupt Controller 109
8.3. ADVANCED DIGITAL INTERRUPTS 110
8.3.1. Event Mode 110
8.3.2. Match Mode 110
8.3.3. Sampling Digital Lines for Change of State 110
5. TIMER/COUNTERS 111
9.1. The internal Timer Timer/Counters 111
9.2. USER TIMER TIMER/COUNTERS 111
6. DIGITAL I/O 113
10.1. The Digital I/O Chip 114
10.1.1 Port 0, Bit Programmable Digital I/O. 114
10.1.2. Advanced Digital Interrupts: Mask and Compare Registers 114
10.1.3. Port 1, Port Programmable Digital I/O 115
10.1.4. Resetting the Digital Circuitry. 115
10.1.5. Strobing Data into Port 0 115
10.2. High-Speed Digital Input 115
10.3. Digital Input Data Markers 115
7. CALIBRATION 116
11.1 SDM7540/8540 CALIBRATION 116
11.2. REQUIRED EQUIPMENT (PCI4520/DM7520) 116
11.2. PCI4520/DM7520 A/D CALIBRATION 116
11.2.1. Bipolar Calibration 116
11.2.3. Unipolar Calibration 118
11.2.4. Gain Adjustment 120
11.3. PCI4520/DM7520 D/A CALIBRATION 121
8. ON-BOARD DSP (SDM7540/8540 ONLY) 123
9. SPECIFICATIONS 124
13.1. COMPUTER INTERFACE 124
13.2. ANALOG INPUT CIRCUITRY 124
13.3. A/D CONVERTER 124
13.4. A/D SAMPLE BUFFER 124
13.5. Channel Gain table 124
13.6. Clocks and Counters 125
13.7. Digital I/O 125
13.8. D/A CONVERTER AND D/A CIRCUITRY 125
13.9. D/A SAMPLE BUFFER 125
APPENDIX A - THE PCI CONFIGURATION REGISTERS, LOCAL CONFIGURATION REGISTERS, RUNTIME REGISTERS, DMA REGISTERS, LOCAL ADDRESS SPACE 0 AND 1 126
DSP MEMORY MAP 134
A1. PCI CONFIGURATION REGISTERS 135
A.1.1. PCIIDR - Device ID, Vendor ID (PCI CFG offset:00, EEPROM offset:00) 137
A.1.2. PCICCR - Class Code (PCI CFG offset:09- OB, EEPROM offset:04), 137
A.1.3. PCICLSR, PCI LTR, PCI HTR, PCIIPR PCIILR - (PCI CFG offset:0C.. OE, 3D, 3C, EEPROM offset:08) 137
A.1.4. PCISVID - PCI Subsystem Vendor ID (PCI CFG offset:2C, EEPROM offset:44) 137
A.1.5. PEROMBA - Expansion ROM PCI Base Address Register(PCI CFG offset:30, EEPROM offset:54) 137
A.2. Local Configuration Registers 138
A.2.1. Range for PCI-to-Local Address Space 0 Register (LASORR, PCI:00h, EEPROM offset: 14)139A.2.2 Local Base Address (Remap) for PCI-to-Local Address Space 0 Register (LASOBA, PCI: 04,EEPROM offset: 18)139
A.2.3 Mode/Arbitration Register (MARBR, PCI: 08, EEPROM offset: 1C). 139
A.2.4 Big/Little Endian Descriptor Register (BIGEND, PCI:0Ch, EEPROM offset: 20h) 140
A.2.5 Expansion ROM Range Register (EROMRR, PCI:10h, EEPROM offset: 24h) 141
A.2.6 Expansion ROM Local Base Address (Remap) Register and BREQo Control (EROMBA, PCI:14h, EEPROM offset: 28h). 141
A.2.7 Local Address Space 0/Expansion ROM Bus Region Descriptor Register (LBRD0; PCI:18h, EEPROM offset: 2Ch) 142
A.2.8 Local Range Register for Direct Master to PCI (DMRR; PCI:1Ch, EEPROM offset: 30h) 143
A.2.9 Local Bus Base Address Register for Direct Master to PCI Memory (DMLBAM; PCI:20h, EEPROM offset: 34h). 143
A.2.10 Local Base Address Register for Direct Master to PCI IO/CFG (DMLBAI; PCI:24h, EEPROM offset: 38h). 143
A.2.11 PCI Base Address (Remap) Register for Direct Master to PCI Memory(DMPBAM; PCI:28h, EEPROM offset: 3Ch) 144
A.2.12 PCI Configuration Address Register for Direct Master to PCI IO/CFG (DMCFGA; PCI:2Ch,EEPROM offset: 40h).145
A.2.13 PCI Local Address Space 1 Range Register for PCI-to-Local Bus (LASIRR; PCI:F0h, EEPROM offset: 48h). 145
A.2.14 Local Address Space 1 Local Base Address (Remap) Register(LAS1BA; PCI:F4h, EEPROM offset: 4Ch) 146
A.2.15 Local Address Space 1 Bus Region Descriptor Register (LBRD1; PCI:F8h, EEPROM offset: 50h)146
A.3. Runtime Registers 147
A.3.1 Serial EEPROM Control, PCI Command Codes, User I/O Control, Init Control (CNTRL;
PCI:6Ch, no EEPROM loadable) 148
A.4. DMA REGISTERS 148
A.5. LAS0 Register Area. 148
A.6. LAS1 Register Area. 148
APPENDIX B - THE PLX9080/9056 EEPROM CONTENT 149
APPENDIX C - DIFFERENCES BETWEEN THE PCI4520, DM7520, AND SDM7540/8540 BOARDS 150
LIMITED WARRANTY. 151

1. Overview

The PCI4520/DM7520/SDM7540/8540 boards turn your desktop PC or PC/104 stack into a highspeed, high-performance data acquisition and control system. The PCI4520/ DM7520/ SDM7540/8540 bus master (DM7520/SDM7540/8540 can be jumpered to target only mode) DAQ boards are basically equivalent systems. There are some differences which are discussed in the appropriate place of the manual. There is a list about the differences in Appendix C.

Board features:

- 8 differential, 16 single-ended analog input channels.
- 12-bit, 1.25 Msamples analog-to-digital converter.
- Programmable input ranges: $+/-5,+/-10$, or 0 to +10 volts
- Programmable gains of $1,2,4,8,16,32,64$ (PCI4520, SDM7540, SDM8540) \& 128 (PCI4520),
- 1024 (8192 - optional) x 24 channel-gain scan memory with skip bit,
- Software, pacer clock and external trigger modes,
- Scan, burst and multi-burst using the channel-gain table,
- 10/16-bit programmable high speed sample counter and 16-bit delay counter,
- 1024 / 8192 sample A/D buffer for gap-free full-speed sampling under Windows ${ }^{\mathrm{TM}}$ and DOS
- Pre-, post- and about-trigger modes,
- 8-bit High-Speed Digital Input with 1 Ksample FIFO,
- 8 bit programmable digital I/O lines with Advanced Digital Interrupt modes,
- 8 bit port programmable digital I/O lines,
- 24.. 10-bit timer/counters (three software configurable available to user in well known 8254 chip) and on-board 8 MHz clock,
- Two 12 -bit, 143 KHz digital to analog converters.
- $+/-5 \mathrm{~V}, 0$ to $+5,+/-10 \mathrm{~V}$, or 0 to +10 Volt analog output ranges.
- Two $1024 / 8192$ sample D/A buffers for gap-free full-speed output
- 2-bit analog output data trigger/marker
- three-line SyncBus for synchronized multiboard operation
- built-in interrupt priority controller for several simultaneous interrupt source handling,
- PCI Bus master Interface with max. 20MSample/s Burst mode data transfer with built-in two-channel DMA controller
- McBSP for high speed data transfer between the connected dspModule (DM7520/SDM7540/8540 only)
- Auto calibration feature (SmartCal) for A/D and D/A with onboard DSP (SDM7540/8540 only)
- On-board temperature sensor (SDM7540/8540 only)

The following paragraphs briefly describe the major functions of the PCI4520/DM7520/SDM7540/8540. A detailed discussion of board functions is included in subsequent chapters. The Figure 1.1 shows the simplified block diagram of the board.

Figure 1.1. Block Diagram

1.1. Analog-to-Digital Conversion

The PCI4520/DM7520/SDM7540/8540 is software configurable on a channel-by-channel basis for up to 16 single-ended (Ground referenced or Non ground referenced) or 8 differential analog inputs. Software programmable unipolar and bipolar input ranges and gains allow easy interfacing to a wide range of sensors. Over voltage protection to $+/-12$ volts is provided at the inputs. The common mode input voltage for differential operation is $+/-10$ volts.

A/D conversions are typically performed in 0.8 microseconds, and the maximum throughput rate of the board is 1.25 MHz . In the case of multi-channel operation the Channel Gain Table FIFO controls the analog multiplexers, the gain, and the A/D conversion. Conversions can be controlled by software
command, by an on-board pacer clock, by using triggers to start and stop sampling, or by using the sample counter to acquire a specified number of samples. Several trigger sources can be used to turn the pacer clock on and off, giving you exceptional flexibility in data acquisition. Scan, burst, and multi-burst modes are supported by using the channel-gain scan memory. A first in, first out (FIFO) sample buffer helps your computer manage the high throughput rate of the A/D converter by acting as an elastic storage bin for the converted data. Even if the computer does not read the data as fast as conversions are performed, conversions can continue until the FIFO is full.

The converted data can be transferred using the programmed I/O mode or the interrupt mode, or using the on-board two-channel DMA controller. A special interrupt mode using a REP INS (Repeat Input String) instruction supports very high speed data transfers by generating an interrupt when the FIFO halffull flag is set, or a specified number of data are converted, a REP INS instruction can be executed, transferring data to PC memory and emptying the FIFO buffer at the maximum rate allowed by the data bus. The data transfer can be done in burst mode of the PCI bus. The on-board DMA controller assures the highest efficiency data transfer between the board and the memory of the PC in burst mode without CPU intervention.

1.2. Digital-to-Analog Conversion

The digital-to-analog (D/A) circuitry features two independent 12-bit analog output channels with individually programmable output ranges of $+/-5$ volts, 0 to +5 volts, $+/-10$ volts or 0 to +10 volts. Each channel has its own 1024/8192 sample FIFO buffer for data storage before being output. Data can be continuously written to the buffer producing a non-repetitive output waveform or a set of data can be written into the buffer and continuously cycled to produce a repeating waveform. Data can be written into the output buffers by memory write instruction. Updating of the analog outputs can be done through software or by several different clocks and triggers. The outputs can be updated simultaneously or independently.

1.3. Timer/Counters

Eight programmable (10 to 24-bit) internal timers to support a wide range of board operations and an 8254 User TC for user timing and counting functions. One internal timer is used for the pacer clock, one is used for the burst clock, one is used for the A/D sample counter, one is used for the D/A1 sample counter, one is used for the $D / A 2$ sample counter, one is used for the A / D delay counter, one is used for the A / D about counter and one is used for D/A output clock. The three channel timer/counters of 8254 are available for user functions.

1.4. Digital I/O

The PCI4520/DM7520/SDM7540/8540 has 16 buffered TTL/CMOS digital I/O lines with eight independent, bit programmable lines at Port 0, and an 8-bit programmable port Port 1. The bit programmable lines support RTD's two Advanced Digital Interrupt modes. An interrupt can be generated when any bit changes value (event interrupt), or when the lines match a programmed value (match interrupt). For either mode, masking can be used to monitor selected lines. Lines are pulled up by 10 kOhm resistors. Port 0 and Port 1 are accessed through the 68 pin I/O connector. (40 pin I/O connector on SDM7540/8540)

1.5. High-Speed Digital Input

The PCI4520/DM7520/SDM7540/8540 has 8 bit buffered TTL/CMOS High speed digital Input lines with $1 / 8 \mathrm{~K}$ Sample FIFO buffer. These lines are shared with the Digital I/O P0 port. Lines are pulled up by 10 kOhm resistors and can be accessed through the $68 \mathrm{pin} \mathrm{I} / \mathrm{O}$ connector ($40 \mathrm{pin} \mathrm{I} / \mathrm{O}$ connector on SDM7540/8540).

The sampling signal can be programmed, the FIFO status can be monitored, or the number of sampled data can be counted by User TC1.

1.6. SyncBus

The three-line SyncBus assures the possibility of using multiple PCI4520/ DM7520/ SDM7540/8540 in one computer synchronously.

1.7.McBSP Multi-channel Buffered Serial Port

This feature is present on the DM7520 and SDM7540/8540 only.
The ten-line (including GNDs) McBSP (defined by Texas Instruments) assures the possibility of using a dspModule with DAQ boards together. This means, that the connected DSP (f. e. RTD SPM 6020/6030) has a direct connection to the analog world using the DM7520/ SDM7540/8540 as a front-end board.

1.8. What Comes With Your Board

You receive the following items in your board package:

- One of the following DAQ boards: PCI4520, DM7520, or SDM7540/8540
- Companion CD-ROM with Documentation and Software

If any item is missing or damaged, please call RTD Customer Service Department at (814) 2348087. If you require service outside the US, contact your local distributor.

1.9. Board Accessories

In addition to the items included in your PCI4520/DM7520/SDM7540/8540 package, RTD offers a full line of software and hardware accessories. Call your local distributor or our main office for more information about these accessories and for help in choosing the best items to support your board's application.

1.10. Hardware Accessories

Hardware accessories for the PCI4520/DM7520/SDM7540/8540 include the TMX32 analog input expansion board with thermocouple compensation which can expand a single input channel on your PCI4520/DM7520/SDM7540/8540 to 16 differential or 32 single-ended input channels, the OP series optoisolated digital input boards, the MR series mechanical relay output boards, the OR16 opto-isolated digital input/mechanical relay output board, the USF8 universal sensor interface with sensor excitation, the TS16 thermocouple sensor board, the TB68 terminal board and XB68 prototype/terminal board for easy signal access and prototype development, and XD68 wire flat ribbon cable assembly for external interfacing.

1.11. Using This Manual

This manual is intended to help you install your new board and get it running quickly, while also providing enough detail about the board and its functions so that you can enjoy maximum use of its features even in the most complex applications. We assume that you already have an understanding of data acquisition principles and that you can customize the example software or write your own application programs.

1.12. When You Need Help

This manual and the example programs in the software package included with your board provide enough information to properly use all of the board's features. If you have any problems installing or using this board, contact our Technical Support Department, (814) 234-8087, during regular business hours, eastern standard time or eastern daylight time, or send a FAX requesting assistance to (814) 234-5218. When sending a FAX request, please include your company's name and address, your name, your telephone number, and a brief description of the problem. You can also contact us through our E-mail address techsupport@rtd.com.

2. Installation

The PCI4520/DM7520/SDM7540/8540 is easy to install in your PC computer with PCI bus. This chapter tells you step-by-step how to install and connect the board.

After you have installed the board and made all of your connections, you can turn your system on and run the board diagnostics program included on your example software disk to verify that your board is working.

2.1. Board Installation

Keep the board in its antistatic bag until you are ready to install it in your computer. When removing it from the bag, hold the board at the edges and do not touch the components or connectors.

This section describes the PCI4520 installation.
Before installing the board in your computer, check the switch settings (SW1 and SW2) of analog input lines. There are no other switches or jumper on the board. Chapter 3 explains the role of switches (SW1), (SW2) and reviews the factory settings and how and why to change them.

To install the PCI4520 board:

1. Turn OFF the power to your PC.
2. Remove the top cover of the computer housing (refer to your owner's manual if you do not already know how to do this).
3. Select any unused PCI Bus master expansion slot (rev. 2.0 or greater) and remove the slot bracket.
4. Touch the metal housing of the computer to discharge any static buildup and then remove the board from its antistatic bag.
5. Holding the board by its edges, orient it so that its card edge (bus) connectors line up with the expansion slot connectors in the bottom of the selected expansion slot.
6. After carefully positioning the board in the expansion slot so that the card edge connectors are resting on the computer's bus connectors, gently and evenly press down on the board until it is secured in the slot.
NOTE: Do not force the board into the slot. If the board does not slide into place, remove it and try again. Wiggling the board or exerting too much pressure can result in damage to the board or to the computer.
7. After the board is installed, secure the slot bracket back into place and put the cover back on your computer. The board is now ready to be connected via the external I/O connector at the rear panel of your computer. Be sure to observe the keying when connecting your external cable to the I/O connector.

To install the DM7520/SDM7540/8540 board:

1. Turn OFF the power to your PC/104plus stack.
2. Remove the cover of the stack.
3. Touch the metal housing of the $\mathrm{PC} / 104$ plus stack to discharge any static buildup and then remove the board from its antistatic bag.
4. Finding slot position and setting rotary switch and JP1 Bus master/Target (JP2 - SDM7540/8540) only mode jumper.
a.) JP1 installed - Bus master mode. Select any unused PCI Bus master board position and set the rotary switch RSW1 (dip switch SW1- SDM7540/8540) on the DM7520 to the position number. The closest position to the cpuModule is the 0 the next is the 1 etc. Be careful, this DAQ board needs a bus master position.
b.) b.) JP1 not installed - Target Only mode. If you are short of Bus master positions or you have any other reason, why you want to use the DM7520 as target only mode follow these instructions. Select any unused PCI target only board position and set the rotary switch RSW1 (dip switch SW1SDM7540/8540) on the DM7520 to the proper position number. The closest position to the cpuModule is the 0 the next is the 1 etc..
5. Install the board into your PC/104 system. Use Metal holders to the keep the appropriate distances between the boards.
6. The board is now ready to be connected via the external I/O connector. Be sure to observe the keying when connecting your external cable to the I/O connector.

-2.2. External I/O Connections

Figure 2.2.1. shows the PCI4520 Con2 68pin male I/O connector at the backplate, and the Table 2.2.1. shows the pinouts while Table 2.2.4. gives the description of signals.
Refer to these diagrams as you make your I/O connections.

The type of the 68 pin male connector is:

AMP 2-174-341-5
or
HONDA PCS-E68LMD

Figure 2.2.1

Figure 2.2.2. shows the DM7520/BM7530 CN2 68pin male I/O connector at the right side of the PC/104plus board, and the Table 2.2.1. shows the pinouts while Table 2.2.4. gives the description of signals.
Refer to these diagrams as you make your I/O connections.

Figure 2.2.2

Figure 2.2.3. shows the SDM7540 CN6 40-pin male I/O connector at the right side of the PC/104plus board, and Table 2.2.2. shows the pinouts while Table 2.2.4. gives the description of signals.
Refer to these diagrams as you make your I/O connections.

Figure 2.2.4. shows the SDM7540 CN9 26-pin male I/O connector at the left side of the $\mathrm{PC} / 104$ plus board, and Table 2.2.3. shows the pinouts while Table 2.2.4. gives the description of signals.
Refer to these diagrams as you make your I/O connections.

Figure 2.2.3

Figure 2.2.4

AIN 9 / AIN1-	2	1	AIN $1 / \mathrm{AIN} 1+$
AIN 10 / AIN2-	4	3	AIN 2 / AIN2+
AIN 11 / AIN3-	6	5	AIN 3 / AIN3+
AIN 12 / AIN4-	8	7	AIN 4 / AIN4+
AGND	10	9	AINSENSE
AIN 13 / AIN5-	12	11	AIN 5 / AIN5+
AIN 14 / AIN6-	14	13	AIN 6 / AIN6+
AIN 15 / AIN7-	16	15	AIN 7 / AIN7+
AIN 16 / AIN8-	18	17	AIN 8 / AIN8+
AGND	20	19	AGND
Reserved	22	21	AOUT 1
Reserved	24	23	AOUT 2
AGND	26	25	Reserved
AGND	28	27	AGND
D/A 2 DATA MARKER 0	30	29	D/A 1 DATA MARKER 0
P1.7 / DIG TABLE 7	32	31	HIGH SPEED INPUT $7 /$ P0.7 / A/D DM2
P1.6 / DIG TABLE 6	34	33	$\begin{gathered} \text { HIGH SPEED INPUT } 6 \text { / P0.6 / A/D } \\ \text { DM1 } \end{gathered}$
P1.5 / DIG TABLE 5	36	35	$\begin{gathered} \text { HIGH SPEED INPUT } 5 / \mathrm{P} 0.5 / \mathrm{A} / \mathrm{D} \\ \text { DM0 } \end{gathered}$
P1.4 / DIG TABLE 4	38	37	HIGH SPEED INPUT 4 / P0.4
P1.3 / DIG TABLE 3	40	39	HIGH SPEED INPUT 3 / P0. 3
P1.2 / DIG TABLE 2	42	41	HIGH SPEED INPUT 2 / P0.2
P1.1 / DIG TABLE 1	44	43	HIGH SPEED INPUT 1 / P0.1
P1.0 / DIG TABLE 0	46	45	HIGH SPEED INPUT 0 / P0.0
DGND	48	47	TRIGGER INPUT
RESET	50	49	EXTERNAL PACER CLOCK INPUT
DGND	52	51	EXTERNAL INTERRUPT INPUT
USER INPUT 1	54	53	USER INPUT 0
USER OUTPUT 1	56	55	USER OUTPUT 0
DGND	58	57	TC OUT 0
EXTERNAL TC GATE 1	60	59	EXTERNAL TC CLOCK 1
TC OUT 2	62	61	TC OUT 1
EXTERNAL TC GATE 2	64	63	EXTERNAL TC CLOCK 2
DGND	66	65	+5 VOLTS
DGND	68	67	+5 VOLTS

Table 2.2.1: DM7520

P1.7 / DIG TABLE 7	2	1	HIGH SPEED INPUT 7 / P0.7 / A/D DM2
P1.6 / DIG TABLE 6	4	3	HIGH SPEED INPUT 6 / P0.6 / A/D DM1
P1.5 / DIG TABLE 5	6	5	HIGH SPEED INPUT 5 / P0.5 / A/D DM0
P1.4 / DIG TABLE 4	8	7	HIGH SPEED INPUT 4 / P0.4
P1.3 / DIG TABLE 3	10	9	HIGH SPEED INPUT 3 / P0.3
P1.2 / DIG TABLE 2	12	11	HIGH SPEED INPUT 2 / P0.2
P1.1 / DIG TABLE 1	14	13	HIGH SPEED INPUT 1 / P0.1
P1.0 / DIG TABLE 0	16	15	HIGH SPEED INPUT 0 / P0.0
Reserved	18	17	Reserved
D/A 2 DATA MARKER 0	20	19	D/A 1 DATA MARKER 0
DGND	22	21	EXTERNAL TRIGGER INPUT
Reserved	24	23	EXTERNAL PACER CLOCK INPUT
DGND	26	25	EXTERNAL INTERRUPT INPUT
USER INPUT 1	28	27	USER INPUT 0
USER OUTPUT 1	30	29	USER OUTPUT 0
DGND	32	31	TC OUT 0
EXTERNAL TC GATE 1	34	33	EXTERNAL TC CLOCK 1
TC OUT 2	36	35	TC OUT 1
EXTERNAL TC GATE 2	38	37	EXTERNAL TC CLOCK 2
DGND	40	39	+5 VOLTS FUSED

Table 2.2.2: CN-6 SDM7540/8540 Digital Connector

Digital I/O 1	2	1	Digital I/O 0
AGND	4	3	+5 V
AOUT2	6	5	AGND
AOUT1	8	7	AGND
AIN 8 / AIN8+	10	9	AIN 16 / AIN8-
AIN 7 / AIN7+	12	11	AIN 15 / AIN7-
AIN 6 / AIN6+	14	13	AIN 14 / AIN6-
AIN 5 / AIN5+	16	15	AIN 13 / AIN5-
AINSENSE	18	17	AGND
AIN 4 / AIN4+	20	19	AIN 12 / AIN4-
AIN 3 / AIN3+	22	21	AIN 11 / AIN3-
AIN 2 / AIN2+	24	23	AIN 10 / AIN2-
AIN1 / AIN1 +	26	25	AIN 9 / AIN1-

Table 2.2.2: CN-9 SDM7540/8540 Analog Connector

AINx / AINx+/ AINx-	Signal Type	SE Analog input high sides / DIFF analog input high sides / DIFF analog inputs low sides.
AGND	Analog	Analog ground.
AINSENSE	Analog Input	Reference Signal in Non ground referenced Single Ended (NRSE) input mode.
AOUT x	Analog Output	Analog outputs.
Reserved	-	Not connected pins.
D/A x DATA MARKER 0	Digital Output	D/A 1 and D/A 20 the output data markers.
HIGH SPEED INPUT x / P0.x / Digital Input Data Markers	Digital Input / Output	High speed inputs to digital input FIFO / Bit programmable P0 lines from digital I/O Chip.
P1.x / DIG TABLE x	Digital Input / Output	Port programmable lines from digital I/O Chip. Outputs from digital part of channel gain table.
DGND	Digital	Digital ground.
TRIGGER INPUT	Digital Input	External trigger input to trigger A/D pacer clock. (LS TTL)
EXTERNAL PACER CLOCK INPUT	Digital Input	External pacer clock to clock A/D. (LS TTL)
EXTERNAL INTERRUPT INPUT	Digital Input	Programmable rising or falling edge external Interrupt source. (LS TTL)
USER INPUT x	Digital Input	User Input 0 and User Input 1 can be read by the LAS0+04h I/O read instruction. . (LS TTL)
USER OUTPUT x	Digital Output	The source of these buffered lines can be programmed. (LS TTL)
TC OUT x	Digital Output	Buffered outputs from the user timer/counters. (LS TTL)
$\begin{gathered} \hline \text { EXTERNAL TC } \\ \text { CLOCK x } \\ \hline \end{gathered}$	Digital Input	External clock signals that go to the software programmable clock source select circuit for the user timer/counters. (LS TTL)
EXT GATE x	Digital Input	External gate signals that go to the software programmable clock source select circuit for the user timer/counters. (LS TTL)
RESET	Digital Output	Active low reset output line asserted when the host PC is in hardware reset, or the Board Clear Command is active. (LS TTL)
+5 VOLTS	Power	+5 Volts from the computer power supply to power front end boards. (Max. 2A)

Table 2.2.4. - The I/O Connector Signal Description

2.3. Connecting the Analog Input Pins

The PCI4520/DM7520/SDM7540/8540 provides flexible input connection capabilities to accommodate a wide range of sensors. You can mix several input modes:

- Ground Referenced Single-Ended (GRSE),
- Non Referenced Single-Ended (NRSE),
- Differential (DIFF) without ground reference, Differential with a dedicated ground, Differential with a separate ground reference through a 10 kOhm resistor.

All of three modes are software selectable. Inside the differential mode the no grounding, the grounding directly or via a 10 kOhm resistor of low side of source can be done by setting the DIP switches on SW1 and SW2. The position of the SW1 and SW2 Switches can be seen in the Figure 2.3.1.

Figure 2.3.1.

The Differential mode with a dedicated ground is actually a single ended mode, but the channel number is only 8 channel and each channel has a dedicated ground pin and ground wire in the cable between the board and the signal conditioning card. This mode can be useful when the shielding of the signal is important.

In the following the analog input modes are explained by text and Figures. In the Figures you can see the simplified block diagram of the analog input section of the Board. The NRSEH, ADCDIFFH INSTGNDH, AINSENSEH are the inside logic state variables for controlling the analog input operation. The switches are realized by analog multiplexers.

2.3.1. Ground Referenced Single-Ended (GRSE) input mode

This mode is suggested only for floating signal sources to avoid the ground loops. To configure the GRSE analog input, connect the high side of the input signal to the selected analog input channel, AIN1 through AIN16, and connect the low side to any of the ANALOG GND pins available at the connector. If you use the channels 9 through 16 switch the appropriate SW1-x and SW2-x off. (See Figure 2.3.1.)

In the Figure 2.3.2 you can see the switch states of this mode. The NRSEH bit is in low state which means that this is not NRSE mode. ADCDIFFH bit is in low state because this is not a differential mode. The INSTGNDH bit is in high state controlling the connection of low side of Instrumentation Amplifier to Analog Ground (AGND). The AINSENSEH bit is in low state because the reference signal of Instrumentation Amplifier is the Analog Ground.

Figure. 2.3.2. Ground Referenced Single Ended input mode

2.3.2.Non Referenced Single-Ended (NRSE) input mode

This mode can be used - first of all - for grounded signal sources (in the Figure 2.3.3.), but can be used for floating sources too. In the case of floating sources an external resistor is needed to ground the AINSENSE signal. To configure the NRSE analog input, connect the high side of the input signal to the selected analog input channel, AIN1 through AIN16, and connect the low side to the AINSENSE pin available at the connector. If you use the channels 9 through 16 switch the appropriate SW1-x and SW2-x off. (See Figure 2.3.1.)

In the Figure 2.3.3 You can see the switch states of this mode. The NRSEH bit is in high state which means that this is the NRSE mode. ADCDIFFH bit is in low state because this is not a differential mode. The AINSENSEH bit is in high state controlling the connection of low side of Instrumentation Amplifier to AINSENSE signal. The INSTGNDH bit is in low state because the reference signal of Instrumentation Amplifier is the AINSENSE signal.

Figure. 2.3.3 Non Referenced Single-Ended input mode

2.3.3. Differential (DIFF) input mode

For differential inputs, your signal source may or may not have a separate ground reference. When using the differential mode, you may need to close the selected channel's DIP switch on SW2 to provide a reference to ground for a signal source without a separate ground reference. (In the Figure 2.3.4.) When you close a DIP switch on SW2, make sure that the corresponding DIP switch on SW1 is open, or the resistor will be bypassed. If you want to use direct grounding the appropriate SW1 switch can be switched on. On DM7520 there are no switches, therefore you must use external components.

Connect the high side of the analog input to the selected analog input channel, AIN1+ through AIN8+, and connect the low side to the corresponding AIN- pin.

In the Figure 2.3.4 You can see the switch states of this mode. The state of NRSEH bit is indifferent in the DIFF mode. The ADCDIFFH bit is in high state controlling the connection of low side of Instrumentation Amplifier to AIN- signal. The INSTGNDH bit is in low state because the reference signal of Instrumentation Amplifier is the AIN- signal. The AINSENSEH bit is in low state because the reference signal of Instrumentation Amplifier is the AIN- signal in DIFF mode.

Figure 2.3.4. Differential input mode

2.4. Connecting the Analog Outputs

For each of the two D/A outputs, connect the high side of the device receiving the output to the AOUT channel and connect the low side of the device to an ANALOG GND.

2.5. Connecting the Timer/Counters and Digital I/O

For all of these connections, the high side of an external signal source or destination device is connected to the appropriate signal pin on the I/O connector, and the low side is connected to any DIGITAL GND.

The termination circuit of digital input/output can be seen in the Figure 2.5.1. In the case of digital input lines the serial 100 hm resistor is missing, and in the case of digital output lines the 10 kOhm pull-up resistor is missing.

Figure 2.5.1.

2.6. Connecting the SyncBus

The SyncBus is an RTD defined digital bus for synchronous operation with other RTD's boards. The signaling level is TTL, the bus is 5 Vcompliant.
The SyncBus connector is the (10 pin right-angle 100mil header) P3 (CN-5 SDM7540/8540) connector at the right top corner of the board. The SyncBus is TTL signaling level and 5V compliant. See Table 4.2.1.f. There are no pull-up resistors on the bus-type lines. If a line is used, there should exist a master/driver of this line somewhere in the system.

SyncBus0	1	2	GND
GND	3	4	GND
SyncBus1	5	6	GND
GND	7	8	GND
SyncBus2	9	10	GND

Table 2.6.1

2.7. Connecting the McBSP

The McBSP Multichannel Buffered Serial a Texas Instruments defined serial bus for DSP and front-end communication. This port is 5Vcompliant.

The McBSP connector is a 10 pin right-angle 100 mil header - P4 Connector (CN18 SDM7540/8540) at the right mid corner of the board. These lines must be connected directly to the appropriate DSP signals. This means, that the DAQ board drives the DR and FSR signals, and receives the DX, FSX and CLKX and CLKR signals. The CLKS signal is defined only for TI connector compliance and is not physically connected on the DAQ boards.

This connection needs a straight 10-pin cable.

CLKS	1	2	GND
CLKR	3	4	FSR
CLKX	5	6	GND
DR	7	8	FSX
DX	9	10	GND

Table 2.7.1

2.8. Connecting the DSP JTAG

The DSP JTAG connector is used for programming developing code on the SDM7540/8540 using Code Composer Studio. The connector is a 14 pin single in-line straight 100mil header (CN-21) below the PC-104 connector. CAUTION-- This should ONLY be used by experienced DSP users.

DSP_TMS	1
DSP_TRST\#	2
DSP_TDI	3
DGND	4
+3.3 V	5
Keyed	6
DSP_TDO	7
DGND	8
DSP_TCK_RET	9
DGND	10
DSP_TCK_IN	11
DGND	12
DSP_EMU0	13
DSP_EMU1	14
Table 2.8.1	

2.9. Jumper Descriptions

A variety of Jumpers exist on the board for different functionality

DM	SDM	Installed	Not Installed	Default
N/A	JP1	Reset	Normal	Not Installed
JP1	JP2	Master	Target	Installed
N/A	JP3	Reserved	Reserved	Not Installed
N/A	JP4	Reserved	Reserved	Not Installed
N/A	JP7	DSP Flash	Reserved	Installed

Table 2.9.1

3. Hardware Description

This chapter describes the features of the PCI4520/DM7520/SDM7540/8540 hardware. The major circuits are the A / D, the D / A, the timer/counters, and the digital I/O lines. This chapter describes the hardware which makes up the major circuits.

3.1. The Operation of Analog Input and High-Speed Digital Input Section

3.1.1. Overall Description

The Figure 3.1.1. shows the structure of Analog and High-Speed Digital Input Section of the Board. The Board has 16 Single Ended. (ground referenced or non ground referenced) or 8 Diff. inputs which are multiplexed. The input voltage range is software programmable for $+/-5$ volts, $+/-10$ volts, or 0 to +10 volts. The multiplexed signal can be amplified with programmable gain. Software programmable binary gains of $1,2,4,8,16,32$, (64 - PCI4520/SDM7540/8540) and 128 (PCI4520) let you amplify lower level signals to more closely match the board's input ranges. The multiplexed and gained analog signal is converted by the A/D converter. The converted data is written to the $1 / 8 \mathrm{KW}$ FIFO. The High-Speed Digital Input lines can be simultaneously sampled with the analog lines. This mode is the Input Data Marker Mode which can be used to sample digital data synchronized with analog signals. The Sampling Signal of the High-Speed Digital Input can be selected to other sources too. The sampled digital data are written to the High-Speed Digital Input FIFO. The channel type, the channel gain and other control bits may come from the channel gain latch or from the channel gain table. The Channel Gain Latch can be used in single-channel operation mode, and the Channel Gain Table can be used in multi-channel operation mode.

3.1.2 Channel Gain Latch (CGL) and Channel Gain Table (CGT)

In the case of single-channel operation the Channel Gain Latch mode must be set by appropriate software instruction. Then the Channel Gain Latch must be loaded. This mode assures the highest sampling rate at the highest accuracy. This mode can be used for analog trigger function. You can use one of the input channels as Analog Trigger Input. Set the Channel input type, the number and gain according to the signal source from software. Reading the converted data from the input channel the analog trigger event can be detected. When the trigger event has been detected, the multi-channel -Channel Gain Table mode can be started.

The Channel-Gain Table lets you sample channels in any order, at high speeds, with a different gain on each channel. This 1024×24-bit memory supports complex channel-gain scan sequences, including digital output control. Using the digital output control feature, you can control external input expansion boards such as the TMX32 to expand channel capacity to up to 512 channels. When used, these control lines are output on Port 1. When the digital lines are not used for this feature, they are available for other digital control functions.

A skip bit is provided in the channel-gain data word to support different sampling rates on different channels. When this bit is set, an A/D conversion is performed on the selected channel but not stored in the FIFO.

In the case of multi-channel operation the Channel Gain Table must be enabled by appropriate software instruction. Then the Channel Gain Table must be cleared and filled with the appropriate entries by the appropriate software instruction. After this setup the read pointer of the Channel Gain Table points to the first entry. The first A/D conversion works according to the first entry of CGT. After an active Conversion Signal (See 2.3 The A/D Conversion Signal) the A/D Converter asserts the End of Conversion Signal. This signal increases the read pointer of the Channel Gain Table and writes the converted data to the A/D FIFO and the sampled High-Speed Digital Input lines to the FIFO if the High Speed Digital Input is in Data Marker Mode. The next conversion works according to the second entry of CGT etc. After reading the
last entry, the read pointer automatically returns to the first entry of the CGT. This returning can be activated by Reset Channel Gain Table software instruction.

The Channel Gain Table assures the possibility of independent programming of the channel type (GRSE., NRSE or DIFF.), the channel gain (1..128) and the input range ($+/-5 \mathrm{~V},+/-10 \mathrm{~V}$ or $0 . .10 \mathrm{~V}$). Therefore CGT assures the possibility of simultaneous update the D/A1 and D/A2 with the appropriate input channels. These functions can be reached via the bits CGT entries.

Figure 3.1.1.

3.1.3. A/D Converter

The 12/16-bit successive approximation A/D converter accurately digitizes dynamic input voltages in 0.8 microseconds, for a maximum throughput rate of $1.25 \mathrm{M} / 100 \mathrm{kHz}$. The converter IC contains a sample-and-hold amplifier, a 12-bit/16-bit A/D converter, a 2.5 -volt reference, a clock, and a digital interface to provide a complete A/D conversion function on a single chip. Its low power CMOS logic combined with a high precision, low noise design give you accurate results.

Conversions are controlled by software command, by pacer clock, by using triggers to start and stop sampling, or by the sample counter to acquire a specified number of samples. An on-board or external pacer clock can be used to control the conversion rate. Conversion modes are described in Chapter 5, A/D Conversions.

3.1.4. A/D FIFO - Sample Buffer

A first in, first out (FIFO) 1024/8194 sample buffer helps your computer manage the high throughput rate of the A / D converter by providing an elastic storage bin for the converted data. Even if the computer does not read the data as fast as conversions are performed, conversions will continue until a FIFO full flag is sent to stop the converter.

The sample buffer does not need to be addressed when you are writing to or reading from it; internal addressing makes sure that the data is properly stored and retrieved. All data accumulated in the sample buffer is stored intact until the PC is able to complete the data transfer. Its asynchronous operation means that data can be written to or read from it at any time, at any rate. When a transfer does begin, the data first placed in the FIFO is the first data out.

3.1.5. Data Transfer

The converted data can be transferred to PC memory in one of three ways. Data can be transferred using the programmed I/O mode, the interrupt mode or using the on-board DMA controller. A special interrupt mode using a REP INS (Repeat Input String) instruction supports very high speed data transfers. By generating an interrupt when the FIFO's half full flag is set, a REP INS instruction can be executed, transferring data to PC memory and emptying the sample buffer at the maximum rate allowed by the data bus. The DMA mode assures the fastest burst mode bus master data transfer.

3.1.6. High-Speed Digital Input section

The Figure 3.1.2. shows the block diagram of High-Speed Digital Input section.
The sampling signal can be software selectable.

Figure 3.1.2.
The Sampled data are written automatically to the High-Speed Digital Input FIFO. Data can be transferred to PC memory in one of two ways. Data can be transferred using the programmed I/O mode, the interrupt mode or using the on-board DMA controller. The Interrupt mode assures the possibility getting Interrupt after an appropriate number of data. The number of data in High-Speed Digital Input FIFO can be counted by the User TC1. User TC1 can be an interrupt Source.

3.2. The Operation of Analog Output

The digital-to-analog (D/A) circuitry features two independent 12 bit analog output channels with individually programmable output ranges of $+/-5$ volts, 0 to +5 volts, $+/-10$ volts or 0 to +10 volts. Each channel has its own 1024/8192 sample buffer for data storage before being output. Data can be continuously written to the buffer producing a non-repetitive output waveform or a set of data can be written into the buffer and continuously cycled to produce a repeating waveform. Data can be written into the output buffers by memory write instruction or by DMA transfer. Updating of the analog outputs can be done through software or by several different clocks and triggers. The outputs can be updated simultaneously or independently.

3.3. Timer/ Counters

One 8254 programmable $16-$ bit, $8-\mathrm{MHz}$ interval timer, and internal ten $16 / 24$ bit timers provide a wide range of timing and counting functions.

The internal timers' work in binary count down mode.
The 8254 is the User TC. All three counters on this chip are available for user functions. Each 16bit timer/counter has two inputs, CLK in and GATE in, and one output, timer/counter OUT. The sources of User TC clock and gate inputs can be programmed. Each TC can be programmed as binary or BCD down counters by writing the appropriate data to the command word, as described in Chapter 4. The command word also lets you set up the mode of operation. The six programmable modes are:

Mode 0 Event Counter (Interrupt on Terminal Count)
Mode 1 Hardware-Retriggerable One-Shot
Mode 2 Rate Generator
Mode 3 Square Wave Mode
Mode 4 Software-Triggered Strobe
Mode 5 Hardware Triggered Strobe (Retriggerable)
These modes are detailed in the 8254 Data Sheet, reprinted from Intel in Appendix C.

3.4. Digital I/O

The 16 digital I/O lines can be used to transfer data between the computer and external devices. Eight lines are bit programmable and eight lines are byte, or port, programmable. Port 0 provides eight bit programmable lines which can be independently set for input or output. These ports support RTD's two Advanced Digital Interrupt modes. An interrupt can be generated when the lines match a programmed value or when any bit changes its current state. A Mask Register lets you monitor selected lines for interrupt generation.

Port 1 can be programmed as an 8-bit input or output port.
Chapter 10 details digital I/O operations and Chapter 8 explains digital interrupts.

3.5. SyncBus

The SyncBus is an RTD defined bus for synchronous operation with other RTD's boards. The SyncBus connector is the (10 pin right-angle 100mil header) P3 Connector (CN5 - SDM7540/8540) at the right top corner of the board. The SyncBus is TTL signaling level and 5V compliant. See Table 4.2.1.f.

Fig. 3.1.3 Connector Locations of the DM7520HR

4. Address Spaces of PCI4520/DM7520/SDM7540/8540

The PCI4520/DM7520/SDM7540/8540 is a PCI bus board with a PCI Bus Master Interface. (The DM7520/SDM7540/8540 is jumper configurable to target only mode) The board has four configuration register areas and two operation register areas.

The configuration Registers are the PCI Configuration Register and the Local Configuration Register, the Runtime Registers and the DMA Registers.

The PCI Configuration Registers, Runtime Registers and the Local Configuration Registers are filled out from an EEPROM on the board after power up. The description of the registers and the content of the EEPROM can be found in the Appendix.

The most interesting areas for the user - described in this Chapter - are the operation register address spaces of the board. There are two operation address spaces, the Local Address Space 0 (LAS0) and 1 (LAS1). These spaces can be accessed by memory instructions and - in the case of LAS1 - the onboard DMA controller. The base addresses of these spaces can be read from the PCI configuration area.

LAS0 is a 512 byte long 32 bit wide memory-mapped area. It can be used to runtime control and setup, configure of the PCI4520/DM7520/SDM7540/8540 board.

LAS1 is a 16 byte long 16 bit wide register area for transferring data/code from/to the board.
The Runtime registers can be used to control the EEPROM access, and the Interrupt operation of the board.

The DMA registers can be used to control the two-channel on-board DMA controllers to make fast data transfer between the FIFO and the PC.

Address Space / Local Bus Accesses
4. 1. Local Address Space 0 (LASO) - Runtime Area

Address LAS0 space	LAS0 Description
000	Runtime Area
0 FF	
100	Setup Area
1 FF	

Read Function	Write Function	Local Address Space 0 Offset
Read Master / Target Only mode jumper (JP1) (PCI4520 is always bus master)	I2C Clock line Write (planned feature)	000h
I2C Data line Read (planned feature)	I2C Data line Write (planned feature)	004h
Read User Inputs	Write User Outputs	008h
Software DAC clock Start	Software DAC clock Stop	00Ch
Read FIFO Status	Software A/D Start	010h
-	Software D/A1 Update	014h
-	Software D/A2 Update	018h
-	-	01Ch
-	-	020h
-	Software Simultaneous D/A1 and D/A2 Update	024h
Software Pacer Start	Software Pacer Stop	028h
Read Timer Counters Status	Software high-speed input Sample Command	02Ch
Read Interrupt Status	Write Interrupt Enable Mask Register	030h
Clear Interrupt set by the Clear Mask	Set Interrupt Clear Mask	034h
Read Interrupt Overrun Register	Clear Interrupt Overrun Register	038h
-	I2C Data line Write enable (planned feature)	03Ch

Read Function	Write Function	Local Address Space 0 Offset
Read Pacer Clock Counter value (24 bit)	Load count in Pacer Clock Counter (24 bit)	040h
Read Burst Clock Counter value 16bit	Load count in Burst Clock Counter 16bit	044h
Read A/D Sample counter value 16bit	Load count in A/D Sample counter 16bit	048h
Read D/Al Update counter value 16bit	Load count in D/Al Update counter 16bit	04Ch
Read D/A2 Update counter value 16bit	Load count in D/A2 Update counter 16bit	050h
Read Delay Counter value 16 bit	Load count in Delay Counter 16 bit	054h
Read About Counter value 16 bit	Load count in About Counter 16 bit	058h
Read DAC clock value 16 bit - PCI4520 24 bit - DM7520/SDM7540/8540	Load count in DAC clock 16 bit - PCI4520 24 bit - DM7520/SDM7540/8540	05Ch
Read 8254 User TC 0 value	Load count in 8254 User TC 0	060h
Read 8254 User TC 1 value	Load count in 8254 User TC 1	064h
Read 8254 User TC 2 value	Load count in 8254 User TC 2	068h
Reserved	Program counter mode for 8254 User TC	06Ch
Read Port 0 digital input lines	Program Port 0 digital output lines	070h
Read Port 1 digital input lines	Program Port 1 digital output lines	074h
Clear digital IRQ status flag/read Port 0 direction, mask or compare register	Clear digital chip/program Port 0 direction, mask or compare register	078h
Read Digital I/O Status word	Program Digital Control Register \& Digital Interrupt enable	07Ch
Read Digital I/O Status word	Program Digital Control Register \& Digital Interrupt enable	07Ch
DSP Command register to be written from the Host side and read from DSP	DSP status to written to by DSP and read from Host side	0B0h
Read analog connection DIO mask	Write analog connection DIO mask	0E0h
Read analog connection DIO data values from output pins	Write analog connection DIO data values to output pins	0E4h
Read analog connection DIO direction	Write analog connection DIO direction	0E8h
Read analog connection DIO IRQ status	-	0ECh

4.1.1. 000h: Read Master / Target Only mode jumper (JP1) / Firmware version number - DM7520/SDM7540/8540 Only (Read only)

Read operation (32-bit, one bit is used)
A read provides the Read Master / Target Only mode jumper state as below.

B31-B8	B7-B4	B3-B1	B0
B31-B8:	Reserved		
B7-B4:	FPGA version		
B3-B1:	Reserved		
B0:	0 Target;	1 Master	

4.1.2. 008h: User Input read / User Output Write (Read/write)

Read operation (32-bit, two bits are used)
A read provides the User Input 0 and User Input 1 bits as below. These digital input lines come from the External I/O connector. The User Input bits are sampled by the read instruction.

B31-B2	B1	B0

B31-B2:	Reserved
B1:	User Input 1 state
B0:	User Input 0 state

Write operation (32-bit, two bits are used)
These bits go to the External I/O connector of the board. If the source of the User Output x is set to the Software Programmable state by the 0x070E and 0x070F Functions, the state of the User Output bits can be programmed by this write operation.

B31-B2:	Reserved
B1:	User Output 1 state
B0:	User Output 0 state

4.1.3.00Ch: User Input read / User Output Write (Read/write)

Read operation starts the D/A Clock
Write operation stops the D/A Clock

4.1.4. 010h: FIFO Status Register / A/D Conversion Start (Read/write)

Read operation (32-bit, upper word is not used)
A read provides the status bits of FIFOs as bellow.

B31-B16															
B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
B0:			0 D/A1 FIFO empty;						1 D/A1 FIFO not empty						
	B1:		0 D/A1 FIFO not half empty;						1 D/A1 FIFO half empty						
	B2:		0 D/A1 FIFO full;						1 D/A1 FIFO not full						
	B3:		Reserved												
	B4:		0 D/A2 FIFO empty;						1 D/A2 FIFO not empty						
	B5:		0 D/A2 FIFO not half empty;						1 D/A2 FIFO half empty						
	B6:		0 D/A2 FIFO full;						1 D/A2 FIFO not full						
	B7:		Reserved												
	B8:		0 A/D FIFO empty;						1 A/D FIFO not empty						
	B9:		0 A/D FIFO half full;						1 A/D FIFO not half full						
	B10:		0 A/D FIFO full;						$1 \mathrm{~A} / \mathrm{D}$ FIFO not full						
	B11:		Reserved												
	B12:		0 HSDI FIFO empty;						1 HSDI FIFO not empty						
	B13:		0 HSDI FIFO half full;						1 HSDI FIFO not half full						
	B14:		0 HSDI FIFO full;						1 HSDI FIFO not full						
	B31-B15:			Rese	ved										

Write operation (16-bit)
Any value written to this register generates a Software A/D Start command.

4.1.5. 014h: Software update D/A1 (Write only)

Write operation (32-bit)

Any value written to this register updates the D/A1 if the update source is software update.

4.1.6. 018h: Software update D/A2 (Write only)
 Write operation (32-bit)

Any value written to this register updates the D/A2 if the update source is software update.

4.1.7. 024h: Simultaneous Software Update D/A1 and D/A2 (Write only)
 Write operation (32-bit)
 Any value written to this register simultaneously updates the D/A1 and D/A2 converters if the update source is software update.

4.1.8. 028h: Pacer Clock Software trigger (Read/Write)

Read operation (32-bit)

A read means a software start trigger of the Pacer Clock if the start trigger source of the pacer clock is set to software trigger. The read value is unimportant.
Write operation (32-bit)
Any written value means a software stop trigger of the Pacer Clock if the stop trigger source of the pacer clock is set to software trigger.

4.1.9. 02Ch: Pacer/Burst Clock Timer Status Register / Software High-Speed Input Sample command (Read/Write)

Read operation (32-bit, upper word is not used)
A read provides the status of the gate of the Timer Counter circuits.

4.1.10. 030h: Interrupt Status/Mask Register (Read/Write)

The PCI4520/DM7520/SDM7540/8540 board has a built-in Priority Interrupt Controller that assures the possibility of multiply interrupt sources can generate interrupt ordered by their priority order. The highest priority is numbered by 0 . The usage of the built-in Priority Interrupt controller is very easy:

1. Set the Interrupt Mask Register (Write LAS0 + 030h) in your initialization part of the software. Enable the required interrupt sources by ones
2. The built-in Priority Interrupt Controller orders the interrupt requests and transmits them to the PC. If an interrupt occurs, you can identify the active source by reading the Interrupt Status Register (Read LAS0 +30 h) in the Interrupt Service Routine. In the Interrupt Status Register always one bit is high indicating the active interrupt source. After identifying the source the request can be serviced.
3. Clear the serviced Interrupt request by the Interrupt Clear register. First write the clear mask writing the appropriate bit pattern to the address LAS0 +034 h . Then a dummy read from LAS $0+034 \mathrm{~h}$ executes the clear.
If you want to check that during servicing the interrupt a new interrupt has not come yet, after clearing the interrupt request read the Interrupt Overrun Register. Zero bits mean, that all interrupt have been serviced correctly. One means that a new interrupt occurred before the previous service was finished. After reading the Interrupt Overrun Register, clear it.

Read operation (32 bit, upper word does not used) A read provides the status flag of the interrupt.
Lowest Priority

B0: $\quad 0$ Board FIFO Write inactive;
B1: $\quad 0$ Reset CGT inactive;
B2: Reserved
B3: 0 Pause CGT inactive; 1 Pause CGT active
B4: 0 About Counter Out inactive; 1 About Counter Out active
B5: 0 Delay Counter Out inactive; 1 Delay Counter Out active
B6: $\quad 0$ A/D Sample Counter inactive; 1 A/D Sample Counter active
B7: $\quad 0$ D/A1 Update Counter inactive; 1 D/A1 Update Counter active
B8: $\quad 0$ D/A2 Update Counter inactive; 1 D/A2 Update Counter active
B9: 0 User TC1 Out inactive; 1 User TC1 Out active
B10: 0 User TC1 Inverted Out inactive; 1 User TC1 Inverted Out active
B11: 0 User TC2 Out inactive; 1 User TC2 Out active
B12: 0 Digital Interrupt inactive; 1 Digital Interrupt active
B13: 0 External Interrupt inactive; 1 External Interrupt active
B14: 0 External Trigger rising edge inactive;
1 External Trigger rising edge active
B15: 0 External Trigger falling edge inactive;
1 External Trigger falling edge active
B31-B16 Reserved
Write operation ($\mathbf{3 2}$ bit, upper word does not used) The interrupt mask register:

B0:	0 Board FIFO Write disabled;	1 Board FIFO Write enabled
B1:	0 Reset CGT disabled;	1 Reset CGT enabled
B2:	Reserved	
B3:	0 Pause CGT disabled;	1 Pause CGT enabled
B4:	0 About Counter Out disabled;	1 About Counter Out enabled
B5:	0 Delay Counter Out disabled;	1 Delay Counter Out enabled
B6:	0 A/D Sample Counter disabled;	1 A/D Sample Counter enabled
B7:	0 D/A1 Update Counter disabled;	1 D/A1 Update Counter enabled
B8:	0 D/A2 Update Counter disabled;	1 D/A2 Update Counter enabled
B9:	0 User TC1 Out disabled;	1 User TC1 Out enabled
B10:	0 User TC1 Inverted Out disabled; 1 User TC1 Inverted Out enabled	
B11:	0 User TC2 Out disabled;	1 User TC2 Out enabled
B12:	0 Digital Interrupt disabled;	1 Digital Interrupt enabled
B13:	0 Digital Interrupt disabled;	1 Digital Interrupt enabled
B14:	0 External Trigger rising edge disa 1 External Trigger rising edge enab	
B15:	0 External Trigger falling edge dis 1 External Trigger falling edge ena	
B31-B	Reserved	

4.1.11. 034h Interrupt Clear Register (Read/Write)

Read operation (32 bit, upper word does not used) A read clears the interrupt status flags of the selected source set by the clear mask.

> B6: $\quad 0$ A/D Sample Counter clear disabled; 1 A/D Sample Counter clear enabled
> B7: $\quad 0$ D/A1 Update Counter clear disabled; 1 D/A1 Update Counter clear enabled
> B8: $\quad 0$ D/A2 Update Counter clear disabled; 1 D/A2 Update Counter clear enabled
> B9: $\quad 0$ User TC1 Out clear disabled; 1 User TC1 Out clear enabled
> B10: 0 User TC1 Inverted Out clear disabled; 1 User TC1 Inverted Out clear enabled
> B11: 0 User TC2 Out clear disabled; 1 User TC2 Out clear enabled
> B12: 0 Digital Interrupt clear disabled; 1 Digital Interrupt clear enabled
> B13: 0 External Interrupt clear disabled;
> 1 External Interrupt clear enabled
> B14: 0 External Trigger rising edge clear disabled;
> 1 External Trigger rising edge clear enabled
> B15: 0 External Trigger falling edge clear disabled;
> 1 External Trigger falling edge clear enabled
> B31-B16 Reserved

4.1.12. 038h Interrupt Overrun Register (Read/Write)

Write operation (32 bit, upper word does not used)
A write clears all bits of the Interrupt Overrun Register.
Read operation (32 bit, upper word does not used)
A read provides the Interrupt Overrun Register. If the interrupts serviced in time all bits are zeros. If a new interrupt request comes before the pervious has been serviced and the request is cleared, the appropriate overrun bit goes into high.

4.1.13. 040h, Pacer Clock Counter (Read/Write)

The Pacer Clock Counter is a 24 bit wide down counter synthesized in the control EPLD of the board. Its clock signal is the 20 or 8 MHz clock. This primary frequency is initially 8 MHz , but can be modified by writing LAS0+ 1 DCh . The output signal is the Pacer Clock signal, which is in a high state during counting, and goes to the low state when the counter rolls to zero.

B31-B24	B23-B0

Read /Write operation (32bit ,24 bits are used)
B23-B0: $\quad 24$ bit Pacer Clock counter value (counting down begins as soon as counter is loaded)
B31-B24 Reserved

4.1.14. 044h, Burst Clock Counter (Read/Write)

The Burst Clock Counter is a 16 bit wide down counter synthesized in the control EPLD of the board. Its clock signal can be 8 MHz or 20 MHz clock signal (see the function at LAS0+1E0h). The output signal is the Burst Clock signal, which is in a high state during counting, and goes to the low state when the counter rolls to zero. The 16 bit wide burst clock counter assures the 122 Hz minimum Burst clock frequency.

B31-B16	B15-B0

Read /Write operation (32bit ,10/16 bits are used)

B15-B0: $\quad 10(16-$ DM7520/SDM7540/8540) bit Burst Clock counter value
B31-B16 Reserved

4.1.15. 048h, A/D Sample Counter (Read/Write)

The A/D Sample Counter is a 16 bit wide down counter synthesized in the control EPLD of the board. Its clock signal can be programmed by writing the LAS0 +170 h address. The output signal is the A/D Sample Counter signal, which is in high state during counting, except the zero state of the counter. This signal can be an interrupt source. If the counter value is zero, the A/D Sample Counter output is in low state and the high-low transition can generate an interrupt. After loading the sample counter, an interrupt is immediately generated. This can be eliminated by disabling the interrupt during the loading process. If a number \mathbf{n} is written into the Sample Counter, then the counter content will reach the zero value, and generates an interrupt after $\mathbf{n}+\mathbf{1}$ event.

The 16 bit wide A/D Sample Counter assures the 65536 maximum value of counting A/D samples.

B31-B16	B15-B0

Read /Write operation (32bit ,16 bits are used)
B15-B0: $\quad 16$ bit A/D Sample counter value
B31-B16 Reserved

4.1.16. 04Ch, D/A1 Update Counter (Read/Write)

The D/A1 Update Counter is a 10 (16 - DM7520/SDM7540/8540) bit wide down counter synthesized in the control EPLD of the board. Its clock signal is the D/A1 update signal. The output signal is the D/A1 Update Counter signal, which is in high state during counting, and goes to the low state when the counter rolls to zero. The 10/16 bit wide D/A1 Update Counter assures the 1024/65536 maximum value of counting D/A1 updates.

B31-B16	B15-B0

Read/Write operation (32bit ,10/16 bits are used)
B15-B0: $\quad 10(16-$ DM7520/SDM7540/8540) bit D/A1 Update counter value
B31-B16 Reserved

4.1.17. 050h, D/A2 Update Counter (Read/Write)

The D/A2 Update Counter is a 16bit wide down counter synthesized in the control EPLD of the board. Its clock signal is the D/A2 update signal. The output signal is the D/A2 Update Counter signal, which is in high state during counting, and goes to the low state when the counter rolls to zero. The 10 bit wide D/A2 Update Counter assures the 65536 maximum value of counting D/A2 updates.

B31-B16	B15-B0

Read /Write operation (32bit ,10/16 bits are used)
B15-B0: $\quad 10(16-$ DM7520/SDM7540/8540) bit D/A2 Update counter value
B31-B16 Reserved

4.1.18.054h, Delay Counter (Read/Write)

The Delay Counter is a 16 bit wide down counter synthesized in the control EPLD of the board. Its clock signal is the same frequency clock signal as the Pacer Clock. During the down counting process the Pacer clock is shut down. The 16 bit wide Delay Counter assures the 65535 maximum value of Pacer clock period delaying the Start Pacer Clock..

B31-B16	B15-B0

Read /Write operation (32bit ,16 bits are used)	
B15-B0:	16 bit Delay counter value
B31-B16	Reserved

4.1.19. 058h, About Counter (Read/Write)

The About Counter is used for delayed Pacer Clock Stop function. If the sampling clock is the Pacer Clock, the number of samples to acquire after stop trigger is programmed in the About Counter The about Counter is a 16 bit wide down counter synthesized in the control EPLD of the board. The 16 bit wide About Counter assures the 65535 maximum value of samples delaying the Stop Pacer Clock. When the about counter is loaded, it triggers the about counter interrupt. When writing code one should ignore this first expected interrupt.

B31-B16	B15-B0

Read /Write operation (32bit ,16 bits are used)
B15-B0: $\quad 16$ bit About counter value
B31-B16 Reserved

4.1.20. 05Ch, DAC Clock Counter (Read/Write)

The DAC Clock Counter is a 24 bit wide down counter synthesized in the control EPLD of the board. Its clock signal is the $8 / 20 \mathrm{MHz}$ clock. The output signal is the DAC Clock signal, which is in high state during counting, and goes to the low state when the counter rolls to zero. The DAC Clock may be the update signal of the D/A converters.

B31-B24	B23-B0

Read /Write operation (32bit ,16 bits are used)
B23-B0: $\quad 16$ bit DAC Clock counter value (counting down begins as soon as counter is loaded)
B31-B24 Reserved

4.1.21. 060h, 064h, 068h: User Timer/Counter 0, 1, 2 (Read/Write)

The PCI4520/DM7520/SDM7540/8540 DAQ Board has an 8254 Timer Counter chip for the user. The clock sources and gates can be programmed.

B31-B8	B7-B0

Read /Write operation (32bit ,16 bits are used)
B7-B0:
Two 8 bit accesses will return/write the count in TC0/1/2 respectively (LSB followed by MSB)
B31-B8
Reserved

4.1.22. 06Ch User Timer/Counter control word (Write Only)

Write operation (32bit, 8 bits are used)
Accesses the timer/counter's control register to directly control the three 16 -bit counters, 0,1 , and 2 .

4.1.23. 070h, Digital I/O chip Port 0, Bit Programmable Port (Read/Write)

This port transfers the 8 -bit Port 0 bit programmable digital input/output data between the board and external devices. The bits are individually programmed as input or output by writing to the Direction Register at LAS0 +078 h . For all bits set as inputs, a read reads the input values and a write is ignored. For all bits set as outputs, a read reads the last value sent out on the line and a write writes the current loaded value out to the line.

Note that when any reset of the digital circuitry is performed (clear chip or computer reset), all digital lines are reset to inputs and their corresponding output registers are cleared.

Read /Write operation (32bit, 8 bits are used)

B31-B8	B7	B6	B5	B4	B3	B2	B1	B0

B7-B0: P0.7- P0.0
B31-B8 Reserved

4.1.24. 074h, Digital I/O chip Port 1, Byte Programmable Port (Read/Write)

This port transfers the 8-bit Port 1 digital input or digital output byte between the board and an external device. When Port 1 is set as inputs, a read reads the input values and a write is ignored. When Port 1 is set as outputs, a read reads the last value sent out of the port and a write writes the current loaded value out of the port.

Note that when any reset of the digital circuitry is performed (clear chip or computer reset), all digital lines are reset to inputs and their corresponding output registers are cleared.

Read/Write operation (32bit, 8 bits are used)

B31-B8	B7	B6	B5	B4	B3	B2	B1	B0

B7-B0: P1.7- P1.0
B31-B8 Reserved

4.1.25. 078h, Read/Program Port 0 Direction/ Mask/ Compare Registers (Read/Write)

32bit, 8bits are used.

A read clears the IRQ status flag or provides the contents of one of digital I/O Port 0's three control registers; and a write clears the digital chip or programs one of the three control registers, depending on the setting of bits 0 and 1 at LAS $0+07 \mathrm{Ch}$. When bits 1 and 0 at LAS $0+07 \mathrm{Ch}$ are 00 , the read/write operations clear the digital IRQ status flag (read) and the digital chip (write). When these bits are set to any other value, one of the three Port 0 registers is addressed.

Direction Register (LAS0 + 07Ch, bits 1 and $0=01$):

This register programs the direction, of each bit at Port 0 , when $0 x 7 C=x x x x x x 01$ binary.

B31-B8	B7	B6	B5	B4	B3	B2	B1	B0

B7-B0: 0 Input; 1 Output
B31-B8 Reserved
Mask Register (LAS0 $+\mathbf{0 7 C h}$, bits 1 and $0=10$):
This register programs the mask, of each bit at Port 0 , when $0 x 7 \mathrm{C}=x x x x x x 10$ binary.

B31-B8	B7	B6	B5	B4	B3	B2	B1	B0

B7-B0: 0 Bit enabled; 1 Masked
B31-B8 Reserved

In the Advanced Digital Interrupt modes, this register is used to mask out specific bits when monitoring the bit pattern present at Port 0 for interrupt generation. In normal operation where the Advanced Digital Interrupt feature is not being used, any bit which is masked by writing a 1 to that bit will not change state, regardless of the digital data written to Port 0 . For example, if you set the state of bit 0 low and then mask this bit, the state will remain low, regardless of what you output at Port 0 (an output of 1 will not change the bit's state until the bit is unmasked).

Compare Register (LAS0 + 07Ch, bits 1 and $0=11$):

This register is used for the Advanced Digital Interrupt modes. In the match mode where an interrupt is generated when the Port 0 bits match a loaded value, this register is used to load the bit pattern to be matched at Port 0 . Bits can be selectively masked so that they are ignored when making a match. NOTE: Make sure that bit 3 at LAS0 +07 Ch is set to 1 , selecting match mode, BEFORE writing the Compare Register value at this address. In the event mode where an interrupt is generated when any Port 0 bit changes its current state, the value which caused the interrupt is latched at this register and can be read from it. Bits can be selectively masked using the Mask Register so a change of state is ignored on these lines in the event mode.

4.1.26. 07Ch, Read Digital IRQ Status/Program Digital Mode (Read/Write)

Digital IRQ/Strobe Status (Read 32bit, 8 bits are used):

A read shows you whether a digital interrupt has occurred (bit 6), whether a strobe has occurred (bit 7, when using the strobe input as described in Chapter 7), and lets you review the states of bits 0 through 5 in this register. If bit 6 is high, then a digital interrupt has taken place. If bit 7 is high, a strobe has been issued.

B31-B8	B7	B6	B5	B4	B3	B2	B1	B0

B1-B0: Port 0 Control Register Select (see register 078h)

$$
00 \text { Clear Digital IRQ Status Flag (read); Reset Digital I/O (write) }
$$

01 P 0 direction register
10 P 0 mask register
11 P0 compare register
B2 0 P1 direction Input; 1 Output
B3 0 Digital IRQ Event Mode; 1 Match Mode
B4 0 Digital IRQ Disabled; 1 Enabled
B5 Digital Sample Clock Select
08 MHz clock
1 Programmable clock
B6 0 No digital interrupt 1 Digital interrupt (READ only)
B7 0 No strobe 1 Strobe (READ only)
B31-B8 Reserved

4.1.27. 0B0h, Command Register (Read / Write) SDM7540/8540 ONLY

Read operation (32-bit, upper word / lower byte not used, SDM7540/8540 only)
This register is written to by the DSP after it has run the command routine. The host is responsible for reading this register to see what error code if any has been generated.

B31-B16								
B15	B14	B13	B12	B11	B10	B9	B8	B7-B0

B31-B16:
B15-B8:
B7- B0:

Reserved
0 Command successful; 1 No Auto-Calibration in Flash Reserved

Write operation (32-bit, upper 3 bytes not used, SDM7540/8540 only)

This register is written to by the host to perform a variety of board functions. A non-maskable interrupt is generated to the DSP which in turn reads the register and performs the function.
B31-B16

B15-B8	B7	B6	B5	B4	B3	B2	B1	B0

B31-B16: Reserved
B15-B8: Reserved
B7- B0: 0x01 Auto-Calibrate
0x02 Internal Flash Download
0x03 Reserved
0x04 Reserved
0x05 Erase Internal Flash
0x06 Reserved

0x07	Attention DSP (is DSP alive)
0x08	Load Factory Default calibration values
0x09	Reserved
0x0A	Get Auto-Calibration Code Version
0x0B	Get Boot loader Code Version

4.1.28. 0E0h, Analog Connector DIO Mask (Read / Write)

Read /Write operation (32bit, 6 bits are used, SDM7540/8540 only)
Sets the mask for interrupts on the input and digital outputs. Default is all bits masked.

	B31-B6	B5	B4	B3	B2	B1	B0
B0:	0 Data output pin 1 of CN9 is masked; unmasked				1 Data output pin 1 of CN9is		
B1:	0 Data output pin 2 of CN 9 is masked; unmasked				1 Data output pin 2 of CN9is		
B2:	0 Positive edge interrupt pin 1 of CN 9 is masked; pin 1 of CN9 is unmasked					1 Positive edge interrupt	
B3:	0 Positive edge interrupt pin 2 of CN9 is masked; pin 2 of CN9 is unmasked					1 Positive edge interrupt	
B4:	0 Negative edge interrupt pin 1 of CN9 is masked; pin 1 of CN9 is unmasked					1 Negative edge interrupt	
B5: B31-	0 Negative edge interrupt pin 2 of CN 9 is masked; pin 2 of CN9 is unmasked					1 Negative edge interrupt	

4.1.29. 0E4h, Analog Connector DIO Data (Read / Write)

Read /Write operation (32bit, 2 bits are used, SDM7540/8540 only)
The written data is the value seen before the output buffer (i.e. if user does not turn direction bit to output this written value does not necessarily reflect what you wrote when you perform a read) The read data is direct from the pin on CN9.

B31-B2	B1	B0

B0: Data value pin 1 CN9
B1: Data value pin 2 CN9
B31-B2 Reserved

4.1.30. 0E8h, Analog Connector DIO Direction (Read / Write)

Read /Write operation (32bit, 2 bits are used, SDM7540/8540 only)
Represents the direction of the DIO pins on CN9. Default is input.

| B31-B2 | B1 | B0 |
| :--- | :--- | :---: | :---: |
| B0: | 0 Input pin 1 CN9 | 1 Output pin 1 CN9 |
| B1: | 0 Input pin 2 CN9 | 1 Output pin 2 CN9 |
| B31-B2 | Reserved | |

4.1.31.0ECh, Analog Connector DIO Interrupt Status (Read Only)

Read operation (32bit, 4 bits are used, SDM7540/8540 only)
A read from this register will give the unmasked interrupt status on pins designated as inputs. The read also clears the register. A read from this register will give interrupt status (masked or unmasked) on pins designated as inputs. The interrupts listed below are combined to generate an interrupt on the local bus along with the interrupts listed in register LAS0 offset 0x30.

B31-B6	B5	B4	B3	B2	B1-B0

B1-B0: Reserved
B2: $\quad 0$ Positive edge interrupt pin 1 of CN9 inactive; $\quad 1$ Positive edge interrupt pin 1 of CN9 is active
B3: $\quad 0$ Positive edge interrupt pin 2 of CN 9 is inactive; 1 Positive edge interrupt pin 2 of CN9 is active
B4: $\quad 0$ Negative edge interrupt pin 1 of CN9 is inactive; 1 Negative edge interrupt pin 1 of CN9 is active
B5: $\quad 0$ Negative edge interrupt pin 2 of CN9 is inactive; 1 Negative edge interrupt pin 2 of CN 9 is active
B31-B6 Reserved

4. 2. Local Address Space 0 (LASO) - Setup Area

The LAS0 Setup Area (LAS0 +100 to 1 FF) is used to program the operating modes of PCI4520/DM7520/SDM7540/8540 Board. The functionality of this area is the same as the Function Select / Argument of older PCI4400 board. The following tables show the programming possibilities of the DAQ board.

After power up the registers of PCI4520/DM7520/SDM7540/8540 is in initial state. This initial state can be reached also by Software Reset. The initial state is signed by ${ }^{\text {® }}$.

The 4.2.1.Table shows the LAS0 Setup area. Function Codes are the PCI4400 style Function Code Function select Code information.

Function group	Function name	LAS0 Offset Address / Function code (hex)	Function argument
Board Control	Software Reset of the board	$\begin{aligned} & 100 \mathrm{~h} \\ & 0 \times 000 \mathrm{~F} \end{aligned}$	-
Demand Mode DMA Control	DMA0 Request source Select	$\begin{aligned} & 104 \mathrm{~h} \\ & 0 \times 0100 \end{aligned}$	$\begin{aligned} & 0 \times 00=\text { Request disable } \\ & 0 \times 01=\mathrm{A} / \mathrm{D} \text { Sample Counter } \\ & 0 \times 02=\mathrm{D} / \mathrm{A} 1 \text { Sample Counter } \\ & 0 \times 03=\mathrm{D} / \mathrm{A} 2 \text { Sample Counter } \\ & 0 \times 04=\text { User TC } 1 \\ & 0 \times 08=\mathrm{A} / \mathrm{D} \text { FIFO half full } \\ & 0 \times 09=\mathrm{D} / \mathrm{A} 1 \text { FIFO half Empty } \\ & 0 \times 0 \mathrm{~A}=\mathrm{D} / \mathrm{A} 2 \text { FIFO half Empty } \end{aligned}$
	DMA1 Request source Select	$\begin{aligned} & \hline 108 \mathrm{~h} \\ & 0 \times 0101 \end{aligned}$	$0 x 00=$ Request disable 0x01 = A/D Sample Counter $0 x 02=$ D/A1 Sample Counter $0 x 03=$ D/A2 Sample Counter 0x04 = User TC 1 $0 x 08=$ A/D FIFO half full $0 x 09=$ D/A1 FIFO half Empty $0 x 0 \mathrm{~A}=\mathrm{D} / \mathrm{A} 2$ FIFO half Empty
	Reset DMA0 Request machine	$\begin{aligned} & \text { 1CCh } \\ & 0 \times 0710 \end{aligned}$	-
	Reset DMA1 Request machine	$\begin{aligned} & \text { 1D0h } \\ & 0 \times 0711 \end{aligned}$	-

Table 4.2.1.a

A/D Conversion and High Speed Digital Input Control	A/D Conversion Signal Select	$\begin{aligned} & 10 \mathrm{C} \\ & 0 \mathrm{x} 0200 \end{aligned}$	$\begin{aligned} & 0 \times 0=\text { Software A/D Start } \\ & (\text { WR_LAS } 0+010 \mathrm{~h}) \\ & 0 \times 1=\text { Pacer Clock } \\ & 0 \times 2=\text { Burst Clock } \\ & 0 \times 3=\text { Digital Interrupt } \\ & 0 \times 4=\text { D/A } 1 \text { Data Marker 1 } \\ & 0 \times 5=\text { D/A } 2 \text { Data Marker } 11 \\ & 0 \times 6=\text { SyncBus } 0 \\ & 0 \times 7=\text { SyncBus } 1 \\ & 0 \times 8=\text { SyncBus } 2 \\ & \hline \end{aligned}$
	Burst Clock start trigger select	$\begin{aligned} & \hline 110 \\ & 0 \times 0201 \end{aligned}$	$\begin{aligned} & 0 \times 0=\text { Software A/D Start } \\ & (\text { WR_LAS } 0+010 \mathrm{~h}) \\ & 0 \times 1=\text { Pacer Clock } \\ & 0 \times 2=\text { External Trigger } \\ & 0 \times 3=\text { Digital Interrupt } \\ & 0 \times 4=\text { SyncBus } 0 \\ & 0 \times 5=\text { SyncBus } 1 \\ & 0 \times 6=\text { SyncBus } 2 \\ & \hline \end{aligned}$
	Pacer Clock start trigger select	$\begin{aligned} & \hline 114 \\ & 0 x 0202 \end{aligned}$	```0x0 = Software Pacer Start (RD_LAS0 +028 h) 0x1 = External trigger \(0 \times 2=\) Digital interrupt \(0 \times 3=\) User TC 2 out \(0 x 4=\) SyncBus 0 \(0 \times 5=\) SyncBus 1 \(0 \times 6=\) SyncBus 2 \(0 \times 7=\) Reserved \(0 \times 8=\) Delayed Software Pacer Start \(0 \times 9=\) Delayed external trigger \(0 x \mathrm{~A}=\) Delayed digital interrupt 0xB = Delayed User TC 2 out \(0 x C=\) Delayed SyncBus 0 0xD = Delayed SyncBus 1 \(0 x E=\) Delayed SyncBus 2 0xF = External Trigger Gated controlled mode```

Table 4.2.1.b

Function group	Function name	LAS0 Offset Address / Function code (hex)	Function argument
A/D Conversion and High Speed Digital Input Control	Pacer Clock Stop Trigger select	$\begin{aligned} & \hline 118 \\ & 0 \times 0203 \end{aligned}$	$\begin{aligned} & \hline 0 \times 0=\text { Software Pacer Stop } \\ & (\text { WR_LAS } 0+028 \text { h }) \\ & 0 \times 1=\text { External Trigger } \\ & 0 \times 2=\text { Digital Interrupt } \\ & 0 \times 3=\text { About Counter } \\ & 0 \times 4=\text { User TC2 out } \\ & 0 \times 5=\text { SyncBus } 0 \\ & 0 \times 6=\text { SyncBus } 1 \\ & 0 \times 7=\text { SyncBus } 2 \\ & 0 \times 8=\text { About Software Pacer Stop } \\ & 0 \times 9=\text { About External Trigger } \\ & 0 \times A=\text { About Digital Interrupt } \\ & 0 \times B=\text { Reserved } \\ & 0 \times C=\text { About User TC2 out } \\ & 0 \times D=\text { About SyncBus } 0 \\ & 0 \times E=\text { About SyncBus } 1 \\ & 0 \times F=\text { About SyncBus } 2 \\ & \hline \end{aligned}$
	About Counter Stop Enable	$\begin{aligned} & \hline 11 \mathrm{C} \\ & 0 \times 0204 \end{aligned}$	$\begin{aligned} & 0=\text { Stop enabled } \\ & 1=\text { Stop disabled } \end{aligned}$
	Pacer Start Trigger Mode select	$\begin{aligned} & 120 \\ & 0 \times 0205 \end{aligned}$	0x0 = Single Cycle Mode - new cycle can be possible after a Software Pacer Start command 0x1 = Trigger Repeat Mode - Pacer can be started by the selected Pacer Start Trigger
	Sampling Signal for High Speed Digital Input Select	$\begin{aligned} & \hline 124 \\ & 0 \times 0206 \end{aligned}$	```0x0 = Software (Write LAS0 + 02Ch) 0x1 = A/D Conversion Signal \(0 \times 2=\) User TC out \(0 \times 3=\) User TC out 1 \(0 \times 4=\) User TC out 2 0x5 = External Pacer Clock 0x6 = External Trigger```
	Clear High Speed Digital Input FIFO	$\begin{aligned} & \hline 128 \\ & 0 \times 020 \mathrm{E} \\ & \hline \end{aligned}$	-
	Clear A/D FIFO	$\begin{aligned} & \hline 12 \mathrm{C} \\ & 0 \mathrm{x} 020 \mathrm{~F} \end{aligned}$	-

Function group	Function name	LAS0 Offset Address / Function code (hex)	Function argument
Channel Gain / Digital Table Control	Write Channel Gain Table (Multi-channel mode)	$\begin{aligned} & \hline 130 \mathrm{~h} \\ & 0 \times 0300 \end{aligned}$	see 4.2.13.
	Write Channel Gain Latch (Single-channel mode)	$\begin{aligned} & \hline 134 \mathrm{~h} \\ & 0 \times 0301 \end{aligned}$	see 4.2.14.
	Write Digital Table (To control external MUX)	$\begin{aligned} & \hline 138 \mathrm{~h} \\ & 0 \times 0302 \end{aligned}$	see 4.2.15.
	Enable Channel Gain Table	$\begin{aligned} & \hline 13 \mathrm{Ch} \\ & 0 \times 0303 \end{aligned}$	$\begin{array}{r} 0 \times 0=\text { Channel Gain Table disabled } \\ \text { Channel Gain Latch enabled } \\ 0 \times 1=\begin{array}{c} \text { Channel Gain Table enabled } \\ \text { Channel Gain Latch disabled } \end{array} \end{array}$
	Enable Digital Table	$\begin{aligned} & \hline 140 \mathrm{~h} \\ & 0 \times 0304 \end{aligned}$	0x0 = Digital Table disabled Digital I/O P1 port enabled 0x1 = Digital Table enabled Digital I/O P1 port disabled
	Table Pause enable	$\begin{aligned} & \hline 144 \mathrm{~h} \\ & 0 \times 0305 \end{aligned}$	$0 \mathrm{x} 0=$ Table Pause disabled $0 \mathrm{x} 1=$ Table Pause enabled
	Reset Channel Gain Table	$\begin{aligned} & \hline 148 \mathrm{~h} \\ & 0 \mathrm{x} 030 \mathrm{E} \end{aligned}$	-
	Clear Channel Gain Table	$\begin{aligned} & 14 \mathrm{Ch} \\ & 0 \mathrm{x} 030 \mathrm{~F} \end{aligned}$	-

Table 4.2.1.d

Function group	Function name	LAS0 Offset Address / Function code (hex)	Function argument
D/A 1Control	D/A1 output type / range	$\begin{aligned} & 150 \mathrm{~h} \\ & 0 \times 0400 \end{aligned}$	$\begin{aligned} & \hline 0 \times 0=\text { unipolar } 0 . .5 \mathrm{~V} \\ & 0 \times 1=\text { unipolar } 0 . .10 \mathrm{~V} \\ & 0 \times 2=\text { bipolar } \pm 5 \mathrm{~V} \\ & 0 \times 3=\text { bipolar } \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$
	D/A1 update source	$\begin{aligned} & \hline 154 \mathrm{~h} \\ & 0 \times 0401 \end{aligned}$	$\begin{aligned} & 0 \times 0=\text { Software D/A1 Update } \\ & 0 \times 1=\text { CGT controlled D/A1 Update } \\ & 0 \times 2=\text { D/A Clock } \\ & 0 \times 3=\text { External pacer clock } \\ & 0 \times 4=\text { SyncBus } 0 \\ & 0 \times 5=\text { SyncBus } 1 \\ & 0 \times 6=\text { SyncBus } 2 \\ & \hline \end{aligned}$
	D/A1 Cycle Mode	$\begin{aligned} & 158 \mathrm{~h} \\ & 0 \times 0402 \end{aligned}$	$\begin{aligned} & \hline 0 \times 0=\text { not cycle } \\ & 0 \times 1=\text { cycle } \\ & \hline \end{aligned}$
	Reset D/A1 FIFO	$\begin{aligned} & \hline 15 \mathrm{Ch} \\ & 0 \times 0406 \end{aligned}$	-
	Clear D/A1 FIFO	$\begin{aligned} & \hline 160 \mathrm{~h} \\ & 0 \times 0407 \end{aligned}$	-
D/A 2Control	D/A2 output type / range	$\begin{aligned} & \hline 164 \mathrm{~h} \\ & 0 \times 0408 \end{aligned}$	$\begin{aligned} & \hline 0 \times 0=\text { unipolar } 0 . .5 \mathrm{~V} \\ & 0 \times 1=\text { unipolar } 0 . .10 \mathrm{~V} \\ & 0 \times 2=\text { bipolar } \pm 5 \mathrm{~V} \\ & 0 \times 3=\text { bipolar } \pm 10 \mathrm{~V} \\ & \hline \end{aligned}$
	D/A2 update source	$\begin{aligned} & \hline 168 \mathrm{~h} \\ & 0 \times 0409 \end{aligned}$	$\begin{aligned} & 0 \times 0=\text { Software D/A2 Update } \\ & 0 \times 1=\text { CGT controlled D/A2 Update } \\ & 0 \times 2=\text { D/A Clock } \\ & 0 \times 3=\text { External Pacer Clock } \\ & 0 \times 4=\text { SyncBus } 0 \\ & 0 \times 5=\text { SyncBus } 1 \\ & 0 \times 6=\text { SyncBus } 2 \\ & \hline \end{aligned}$
	D/A2 Cycle Mode	$\begin{aligned} & \hline 16 \mathrm{Ch} \\ & 0 \times 040 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 0 \times 0=\text { not cycle } \\ & 0 \times 1=\text { cycle } \\ & \hline \end{aligned}$
	Reset D/A2 FIFO	$\begin{aligned} & \hline 170 \mathrm{~h} \\ & 0 \times 040 \mathrm{E} \end{aligned}$	-
	Clear D/A2 FIFO	$\begin{aligned} & \hline 174 \mathrm{~h} \\ & 0 \mathrm{x} 040 \mathrm{~F} \end{aligned}$	-

Table 4.2.1.e

D/A Clock control	D/A clock start select	$\begin{aligned} & \hline \text { 1D4h } \\ & 0 \times 0410 \end{aligned}$	$\begin{aligned} & \text { 0x0 = Software Pacer Start } \\ & (\text { RD_LAS0 }+028 \mathrm{~h}) \\ & 0 \times 1=\text { External trigger } \\ & 0 \times 2=\text { Digital interrupt } \\ & 0 \times 3=\text { User TC } 2 \text { out } \\ & 0 \times 4=\text { SyncBus } 0 \\ & 0 \times 5=\text { SyncBus } 1 \\ & 0 \times 6=\text { SyncBus } 2 \\ & 0 \times 7=\text { Software D/A clock start } \\ & (\text { RD_LAS0 }+00 \mathrm{Ch}) \end{aligned}$
	D/A clock stop select	$\begin{aligned} & \hline \text { 1D8h } \\ & 0 \times 0411 \end{aligned}$	$\begin{aligned} & \hline 0 \times 0=\text { Software Pacer Stop } \\ & (\text { WR_LAS0 }+028 \mathrm{~h}) \\ & 0 \times 1=\text { External Trigger } \\ & 0 \times 2=\text { Digital Interrupt } \\ & 0 \times 3=\text { User TC2 out } \\ & 0 \times 4=\text { SyncBus } 0 \\ & 0 \times 5=\text { SyncBus } 1 \\ & 0 \times 6=\text { SyncBus } 2 \\ & 0 \times 7=\text { Software D/A clock stop } \\ & \text { (WR_LAS0 }+00 \mathrm{Ch}) \\ & 0 \times 8=\text { D/A1 update counter } \\ & 0 \times 9=\text { D/A2 update counter } \\ & \hline \end{aligned}$
	D/A clock free-run or start-stop mode select	$\begin{aligned} & \hline \text { 1E8h } \\ & 0 x 0412 \end{aligned}$	$0 \times 0=\mathrm{D} / \mathrm{A}$ clock is running free $0 \times 1=\mathrm{D} / \mathrm{A}$ clock started or stopped by functions 0×0410 or 0×0411

Table 4.2.1.f

Function group	Function name	LAS0 Offset Address / Function code (hex)	Function argument
Timer / Counter Control	A/D Sample Counter Source Select	$\begin{aligned} & \hline 178 \mathrm{~h} \\ & 0 \times 0500 \end{aligned}$	0x0 = Reset Channel Gain Table $0 \times 1=\mathrm{A} / \mathrm{D}$ FIFO write
	Pacer Clock Primary frequency Select	$\begin{aligned} & \hline \text { 1DCh } \\ & 0 \times 0501 \end{aligned}$	$\begin{aligned} & 0 \mathrm{x} 0=8 \mathrm{MHz} \\ & 0 \mathrm{x} 1=20 \mathrm{MHz} \\ & \hline \end{aligned}$
	Burst Clock Primary frequency Select	$\begin{aligned} & \hline \text { 1E0h } \\ & 0 \times 0502 \end{aligned}$	$\begin{aligned} & 0 \mathrm{x} 0=8 \mathrm{MHz} \\ & 0 \mathrm{x} 1=20 \mathrm{MHz} \end{aligned}$
	DAC Clock Primary frequency Select	$\begin{aligned} & \hline \text { 1E4h } \\ & 0 \times 0503 \end{aligned}$	$\begin{aligned} & 0 \mathrm{x} 0=8 \mathrm{MHz} \\ & 0 \mathrm{x} 1=20 \mathrm{MHz} \end{aligned}$
	Pacer Clock Select	$\begin{aligned} & \hline 180 \mathrm{~h} \\ & 0 \times 0509 \end{aligned}$	$\begin{aligned} & \hline 0 \times 0=\text { External Pacer Clock } \\ & 0 \times 1=\text { Internal Pacer Clock } \end{aligned}$
SyncBus Setup	SyncBus 0 Source Select	$\begin{aligned} & \hline 184 \mathrm{~h} \\ & 0 \times 0510 \end{aligned}$	0x0 = Software A/D Start $($ WR_LAS $0+010 h)$ $0 \times 1=$ Pacer Clock $0 \times 2=$ Burst Clock $0 \times 3=$ Digital Interrupt $0 \times 4=$ External Trigger $0 \times 5=$ Software Simultaneous D/A1 and D/A2 Update $0 \times 6=$ D/A Clock $0 \times 7=$ User TC2 out
	Enable SyncBus 0	$\begin{aligned} & 188 \mathrm{~h} \\ & 0 \times 0511 \end{aligned}$	$\begin{aligned} & 0 \times 0=\text { disable } \\ & 0 \times 1=\text { enable } \end{aligned}$
	SyncBus 1 Source Select	$\begin{aligned} & \hline 18 \mathrm{Ch} \\ & 0 \times 0512 \end{aligned}$	0x0 = Software A/D Start $($ WR_LAS0 + 010h $)$ $0 \times 1=$ Pacer Clock $0 \times 2=$ Burst Clock $0 \times 3=$ Digital Interrupt $0 \times 4=$ External Trigger $0 \times 5=$ Software Simultaneous D/A1 and D/A2 Update $0 \times 6=$ D/A Clock $0 \times 7=$ User TC2 out
	Enable SyncBus 1	$\begin{aligned} & \hline 190 \mathrm{~h} \\ & 0 \times 0513 \end{aligned}$	$\begin{aligned} & 0 \times 0=\text { disable } \\ & 0 \times 1=\text { enable } \end{aligned}$
	SyncBus 2 Select	$\begin{aligned} & 198 \mathrm{~h} \\ & 0 \mathrm{x} 0518 \end{aligned}$	$\begin{aligned} & \text { 0x0 = Software A/D Start } \\ & (\text { WR_LAS0 }+010 h) \\ & 0 \times 1=\text { Software Pacer Start } \\ & 0 \times 2=\text { Software Pacer Stop } \\ & 0 \times 3=\text { Software D/A1 Update } \\ & 0 \times 4=\text { Software D/A2 Update } \\ & 0 \times 5=\text { External Pacer Clock } \\ & 0 \times 6=\text { External Trigger } \\ & 0 \times 7=\text { User TC2 out } \end{aligned}$
	Enable SyncBus 2	$\begin{aligned} & 19 \mathrm{Ch} \\ & 0 \times 0519 \end{aligned}$	$\begin{aligned} & 0 \times 0=\text { disable } \\ & 0 \times 1=\text { enable } \end{aligned}$

Table 4.2.1.g

External Trigger and	External Trigger	1A4h	$0 x 0=$ positive edge
External Interrupt	polarity select	$0 x 0601$	$0 x 1=$ negative edge
Configuration	External Interrupt	1 A 8 h	$0 x 0=$ positive edge
	polarity select	$0 x 0602$	$0 x 1=$ negative edge

Function group	Function name	LAS0 Offset Address / Function code (hex)	Function argument
User TimerCounter Control	User Timer/Counter 0 Clock Select	$\begin{aligned} & \hline \text { 1ACh } \\ & 0 \times 0700 \end{aligned}$	$\begin{aligned} & \hline 0 \times 0=8 \mathrm{MHz} \\ & 0 \times 1=\text { Ext. TC Clock } 1 \\ & 0 \times 2=\text { Ext. TC Clock } 2 \\ & 0 \times 3=\text { Ext. Pacer Clock } \\ & \hline \end{aligned}$
	User Timer/Counter 0 Gate Select	$\begin{aligned} & \hline \text { 1B0h } \\ & 0 \times 0701 \end{aligned}$	$\begin{aligned} & \hline 0 \times 0=\text { Not gated } \\ & 0 \times 1=\text { Gated } \\ & 0 \times 2=\text { Ext. TC Gate } 1 \\ & 0 \times 3=\text { Ext. TC Gate } 2 \end{aligned}$
	User Timer/Counter 1 Clock Select	$\begin{aligned} & \text { 1B4h } \\ & 0 \times 0702 \end{aligned}$	$\begin{aligned} & 0 \times 0=8 \mathrm{MHz} \\ & 0 \times 1=\text { Ext. TC Clock } 1 \\ & 0 \times 2=\text { Ext. TC Clock } 2 \\ & 0 \times 3=\text { Ext. Pacer Clock } \\ & 0 \times 4=\text { User Timer/Counter } 0 \text { out } \\ & 0 \times 5=\text { High-Speed Digital Input Sampling } \\ & \text { signal } \end{aligned}$
	User Timer/Counter 1 Gate Select	$\begin{aligned} & \hline \text { 1B8h } \\ & 0 \times 0703 \end{aligned}$	$\begin{aligned} & 0 \times 0=\text { Not gated } \\ & 0 \times 1=\text { Gated } \\ & 0 \times 2=\text { Ext. TC Gate } 1 \\ & 0 \times 3=\text { Ext. TC Gate } 2 \\ & 0 \times 4=\text { User Timer/Counter } 0 \text { out } \end{aligned}$
	User Timer/Counter 2 Clock Select User Timer/Counter 2 Gate Select	$\begin{aligned} & \hline \begin{array}{l} 1 \mathrm{BCh} \\ 0 \times 0704 \end{array} \\ & \\ & 1 \mathrm{COh} \\ & 0 \times 0705 \end{aligned}$	$\begin{aligned} & 0 \times 0=8 \mathrm{MHz} \\ & 0 \times 1=\text { Ext. TC Clock } 1 \\ & 0 \times 2=\text { Ext. TC Clock } 2 \\ & 0 \times 3=\text { Ext. Pacer Clock } \\ & 0 \times 4=\text { User Timer/Counter } 1 \text { out } \\ & 0 \times 0=\text { Not gated } \\ & 0 \times 1=\text { Gated } \\ & 0 \times 2=\text { Ext. TC Gate } 1 \\ & 0 \times 3=\text { Ext. TC Gate } 2 \\ & 0 \times 4=\text { User Timer/Counter } 1 \text { out } \end{aligned}$
User Output Signal Control	User Output Signal 0 select	$\begin{aligned} & \hline \text { 1C4h } \\ & 0 \times 070 \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 0 \times 0=\mathrm{A} / \mathrm{D} \text { Conversion Signal } \\ & 0 \times 1=\mathrm{D} / \mathrm{A} 1 \text { Update } \\ & 0 \times 2=\mathrm{D} / \mathrm{A} 2 \text { Update } \\ & 0 \times 3=\text { Software Programmable by } \\ & \text { WR_LAS0 }+008 \mathrm{~h} \\ & \hline \end{aligned}$
	User Output Signal 1 select	$\begin{aligned} & \hline \text { 1C8h } \\ & 0 \times 070 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 0 \times 0=\mathrm{A} / \mathrm{D} \text { Conversion Signal } \\ & 0 \times 1=\mathrm{D} / \mathrm{A} 1 \text { Update } \\ & 0 \times 2=\mathrm{D} / \mathrm{A} 2 \text { Update } \\ & 0 \times 3=\text { Software Programmable by } \\ & \text { WR_LAS0 }+008 \mathrm{~h} \\ & \hline \end{aligned}$

Table 4.2.1.i

Function group	Function name	LAS0 Offset Address / Function code (hex)	Function argument
McBSP control	A/D FIFO data to DSP enable	$\begin{aligned} & \hline \text { 1ECh } \\ & 0 \times 0800 \end{aligned}$	$0 \mathrm{x} 0=\mathrm{A} / \mathrm{D}$ FIFO data to DSP is disabled $0 \times 1=\mathrm{A} / \mathrm{D}$ FIFO data to DSP is enabled
	D/A FIFO data from DSP enable	$\begin{aligned} & \hline \text { 1F0h } \\ & \text { 0x0801 } \end{aligned}$	$0 \times 0=\mathrm{D} / \mathrm{A} 1$ and D/A2 FIFO data from DSP is disabled $0 \times 1=$ D/A1 and D/A2 FIFO data from DSP is enabled
FIFO addressing mode	FIFO addressing mode	$\begin{aligned} & \hline \text { 1F4h } \\ & 0 \times 0802 \end{aligned}$	$\begin{aligned} & 0 \times 0=\text { FIFO addressing mode } \\ & 0 \times 1=4 \mathrm{M} \text { step FIFO addressing (planned feature) } \end{aligned}$

Table 4.2.1.j

4.2.1. 100h, Software Reset of the board (Write Only)

Writing a dummy value to this address means a Software Reset.
Software Reset of the board resets all inside logic variables of the board, equivalently with the power-up states. (■).

4.2.2. 104h, DMA0 Request Source Select (Write Only)

The DMA0 Request Source Signal can be selected by writing these values to LAS0+104h:

$$
\begin{aligned}
& 0 \times 00=\text { Request disable } \\
& 0 \times 01=\text { A/D Sample Counter } * \\
& 0 \times 02=\text { D/A1 Sample Counter } * \\
& 0 \times 03=\text { D/A2 Sample Counter } * \\
& 0 \times 04=\text { User TC } 1 * \\
& 0 x 08=\text { A/D FIFO half full } \\
& 0 \times 09=\text { D/A1 FIFO half Empty } \\
& 0 \times 0 \text { A }=\text { D/A2 FIFO half Empty }
\end{aligned}
$$

The selected source controls the DMA request signal of the PCI9080/9056 chip (DREQ0). The signals signed by * set a request flip-flop only. These setups need the Reset DMA0 Request Machine command. The FIFO flags control the DMA request signal directly, so they do not need the Reset command.

4.2.3. 108h, DMA1 Request Source Select (Write Only)

The DMA1 Request Source Signal can be selected by writing these values to LAS0+108h:

$$
\begin{aligned}
& 0 x 00=\text { Request disable } \\
& 0 x 01=\text { A/D Sample Counter* } \\
& 0 x 02=\text { D/A1 Sample Counter* } \\
& 0 x 03=\text { D/A } 2 \text { Sample Counter* } \\
& 0 x 04=\text { User TC } 1^{*} \\
& 0 x 08=\text { A/D FIFO half full } \\
& 0 x 09=\text { D/A1 FIFO half Empty } \\
& 0 x 0 \mathrm{~A}=\mathrm{D} / \mathrm{A} 2 \text { FIFO half Empty }
\end{aligned}
$$

The selected source controls the DMA request signal of the PCI9080/9056 chip (DREQ1). The signals signed by * set a request flip-flop only. These setups need the Reset DMA1 Request Machine command. The FIFO flags control the DMA request signal directly, so they do not need the Reset command.

4.2.4. 1CCh, Reset DMA0 Request machine (Write Only)

The Reset DMA0 Request machine command resets the DMA0 Request to the PCI9080/9056 PCI interface chip. This command can be activated by writing to LAS0+1CCh a dummy value. This command has effect only in Demand Mode of the PCI9080/9056. It is needed only with DMA request sources signed by * in 4.2.2.

4.2.5. 1D0h, Reset DMA1 Request machine (Write Only)

The Reset DMA0 Request machine command resets the DMA0 Request to the PCI9080/9056 PCI interface chip. This command can be activated by writing to LAS0+1D0h a dummy value. This command has effect only in Demand Mode of the PCI9080/9056. It is needed only with DMA request sources signed by * in 4.2.3.

4.2.6. 10Ch, A/D Conversion Signal Select (Write Only)

The A/D conversion Signal can be selected by writing these values to LAS0+108h:

```
0x0 = Software A/D Start (value unimportant)
0x1 = Pacer Clock (Ext. or Int.)
0x2 = Burst Clock
0x3 = Digital Interrupt
0x4 = D/A1 Data Marker 1
0x5 = D/A2 Data Marker 1
0x6 = SyncBus0
0x7 = SyncBus1
0x8 = SyncBus2
```

The A/D Conversion signal select Function is used to choose the A/D Sampling signal. The Data Markers (0×4 and 0×5) are updated simultaneously with the appropriate D/A output. The conversion is started at the rising edge of the data marker. The data marker must be held in low state until you want to start a conversion. After the conversion the appropriate data marker must be cleared.

4.2.7. 110h, A/D Burst Clock start trigger select (Write Only)

If you want to use the burst clock as conversion signal source the start trigger must be set by writing this address. The stop trigger of the burst clock is generated automatically, because the stop signal basically is the CGT reset signal that occurs at the end of the whole CGT cycle.

```
0x0 = Software A/D Start (value unimportant)
0x1 = Pacer Clock
0x2 = External Trigger
0x3 = Digital Interrupt
0x4 = SyncBus 0
0x5 = SyncBus 1
0x6 = SyncBus 2
```


4.2.8. 114h, Pacer Clock start trigger select (Write Only)

If you want to use the Pacer Clock you must specify the start and stop conditions. The Pacer Clock Start Trigger Function selects the start signal of the Pacer Clock:

```
\(0 x 0=\) Software Pacer Start (a dummy read from 28h)
\(0 \times 1=\) External trigger
\(0 \times 2=\) Digital interrupt
\(0 \times 3=\) User TC 2 out
\(0 \times 4=\) SyncBus 0
\(0 x 5=\) SyncBus 1
\(0 x 6=\) SyncBus 2
0x7 = Reserved
0x8 = Delayed Software Pacer Start (a dummy read from 28h)
0x9 = Delayed external trigger
0xA = Delayed digital interrupt
\(0 \times B=\) Delayed User TC 2 out
\(0 x C=\) Delayed SyncBus 0
0xD = Delayed SyncBus 1
\(0 x E=\) Delayed SyncBus 2
\(0 x F=\) External Trigger Gated controlled
```

The following start trigger sources, 0x8 through 0xF provide delayed triggering. When the start trigger is issued, the A/D Delay Counter, counts down and conversions are started when the A/D Delay Counter reaches 0 . The A/D Delay Counter counts at the pacer clock rate. When using the External Trigger Gated
control (0 xF) the pacer clock runs as long as the External Trigger Input line is held high or low, depending on the trigger polarity. This mode does not use a stop trigger.

4.2.9. 118h, Pacer Clock Stop Trigger select (Write Only)

The Pacer Clock Stop Trigger Function selects the stop signal of the Pacer Clock:

$$
\begin{aligned}
& 0 \times 0=\text { Software Pacer Stop }(\text { a dummy write to } 28 \mathrm{~h}) \\
& 0 \times 1=\text { External Trigger } \\
& 0 \times 2=\text { Digital Interrupt } \\
& 0 \times 3=\text { About Counter } \\
& 0 \times 4=\text { User TC2 out } \\
& 0 \times 5=\text { SyncBus } 0 \\
& 0 \times 6=\text { SyncBus } 1 \\
& 0 \times 7=\text { SyncBus } 2 \\
& 0 \times 8=\text { About Software Pacer Stop (a dummy write to } 28 \mathrm{~h}) \\
& 0 \times 9=\text { About External Trigger } \\
& 0 \times A=\text { About Digital Interrupt } \\
& 0 \times B=\text { Reserved } \\
& 0 \times C=\text { About User TC } 2 \text { out } \\
& 0 \times D=\text { About SyncBus } 0 \\
& 0 \times E=\text { About SyncBus } 1 \\
& 0 \times F=\text { About SyncBus } 2
\end{aligned}
$$

Stop trigger sources 0 x 8 through 0 xF provide about triggering, where data is acquired from the time the start trigger is received, and continues for a specified number of samples after the stop trigger is received. The number of samples taken after the stop trigger is received is set by the About Counter which counts down and is clocked by the writing signal of A/D FIFO. This method assures the desired number of samples will be sampled (count reaches 0).

4.2.10. 11Ch, About Counter Stop Enable (Write Only)

If the Pacer Clock is the source of A / D Conversion signal and the Pacer Clock Stop comes from the About Counter counting the samples in the A/D FIFO you can extend the counting capability highest number than 10 bit defined 1024 samples. Writing this address you can enable or disable the stop function:

$$
0=\text { Stop enabled }
$$

1 = Stop disabled

4.2.11. 120h, Pacer Start Trigger Mode select (Write Only)

When set to single cycle, a trigger will initiate one conversion cycle and then stop, regardless of whether the trigger line is pulsed more than once; when set to repeat, a new cycle will start each time a trigger is received, and the current cycle has been completed. Triggers received while a cycle is in progress will be ignored. Writing this address you can select single cycle or repeat mode:
$0 x 0=$ Single Cycle Mode - new cycle can be possible after a Software Pacer Start
command
$0 \times 1=$ Trigger Repeat Mode - Pacer can be started by the selected Pacer Start
Trigger

4.2.12. 124h, Sampling Signal for High Speed Digital Input Select (Write Only)

The sampling signal of High-Speed Digital Input can be selected by writing this address. If you select the A/D conversion signal, the 8 -bit digital input lines are simultaneously sampled with the analog signals.

$$
\begin{aligned}
& 0 \times 0=\text { Software }(\text { dummy write } 2 \mathrm{Ch}) \\
& 0 \times 1=\text { A/D Conversion Signal } \\
& 0 \times 2=\text { User TC out } \\
& 0 \times 3=\text { User TC out } 1 \\
& 0 \times 4=\text { User TC out } 2 \\
& 0 \times 5=\text { External Pacer Clock } \\
& 0 \times 6=\text { External Trigger }
\end{aligned}
$$

4.2.13. 128h, Clear High Speed Digital Input FIFO (Write Only)

Writing a dummy data to this address clears the High-Speed Digital Input FIFO.

4.2.14. 12Ch, Clear A/D FIFO (Write Only)

Writing a dummy data to this address clears the A/D FIFO.
The Table 4.1.4. shows the Channel Gain Table Control Functions. Figure 4.1.1. shows the bits of Channel Gain Latch - single-channel mode and the bits of the Channel Gain Table multi-channel mode.

4.2.15. 130h, Write ADC channel gain table (Write Only)

In the case of multi-channel operation the Channel Gain Table must be used. Before writing the channel gain table entries write a dummy data to 14 Ch to clear the table. The structure of the entries in the table can be seen below:

Using the pause bit: The pause bit of the channel-gain word is set to 1 if you want to stop at an entry in the table and wait for the next trigger to resume conversions. In burst mode, the pause bit is ignored.
Using the skip bit: The skip bit of the channel-gain word is set to 1 if you want to skip an entry in the table. This feature allows you to sample multiple channels at different rates on each channel. For example, if you want to sample channel 1 once each second and channel 4 once every 3 seconds, you can set the skip bit on channel 4. With the skip bit set on the four table entries; these entries will be ignored, and no A/D conversion will be performed. This saves memory and eliminates the need to throw away unwanted data.

4.2.16. 134h, Write ADC channel gain latch (Write Only)

In the case of single-channel operation the Channel Gain Latch must be used. The data structure is the same as in the Channel Gain Table but there are no meaning of the skip bit, D/Ax Update and the Pause Bit. These bits must be zero.

4.2.17. 138h, Write Digital table (Write Only)

The Digital Table is part of the Channel Gain Table, and can be used to control external devices. Using this function you can fill the 8bit wide Digital Table. Reading of the Digital Table is simultaneous with reading the Channel Gain Table. Figure 4.1.2. shows the bit structure of Digital Table.

B31-B8	B7-B0

Read /Write operation (32bit ,16 bits are used)

B7-B0:	P1.7-P1.0	Eight bit Digital output table bits
B31-B8	Reserved	

The Digital Output Table bits use the same lines as the Digital I/O Chip Port 1 I/O port. In the case of usage the P1 digital I/O lines the Digital Table bits cannot be used. The Enable Digital Table Function (0x0304) can be used to select between the Digital I/O P1 port and the Digital Output Table bits. The digital portion of the channel-gain table provides 8 bits to control devices such as external expansion boards. For example, if you have connected one of your input channels on the PCI4520/DM7520 to RTD's TMX32 input expansion board, you can use the bottom 5 bits in this byte to control the TMX32 board channel selection. To load digital information into this portion of the channel, use this function. This information will be output on the Port 1 lines when you run through the table. The format shown above is for controlling the TMX32's channel selection (32 single-ended or 16 differential). The first load operation will be in the first entry slot of the table (lining up with the first entry in the A/D table), and each load thereafter fills the next position in the channel-gain table. Note that when you are using the digital table, all 8 bits are used and controlled by the table, regardless of the number of bits you may actually need for your digital control application.

4.2.18. 13Ch, Enable Channel Gain Table (Write Only)

Writing to this address you can select the Channel Gain Latch or the Channel Gain Table controlled operation.

$$
\begin{array}{ll}
0 \times 0=\text { CGT disabled; } & \text { Channel Gain Latch enabled } \\
0 \times 1=\text { CGT enabled } & \text { Channel Gain Latch disabled }
\end{array}
$$

4.2.19. 140h, Enable Digital Table (Write Only)

Writing to this address you can select the P1 port of Digital I/O chip or the output of the Digital Table on the pin $32 . .46$ of External I/O connector.
$0 \times 0=$ Digital Table disabled; \quad Digital I/O P1 port enabled
$0 \times 1=$ Digital Table enabled;
Digital I/O P1 port disabled

4.2.20. 144h, Table Pause enable (Write Only)

The pause bit of the Channel Gain Table is set to 1 if you want to stop at an entry in the table and wait for the next trigger to resume conversions. In burst mode, the pause bit is ignored. Writing this address this mode can be enabled:

$$
\begin{aligned}
& 0 \times 0=\text { Table Pause enabled } \\
& 0 \times 1=\text { Table Pause disabled }
\end{aligned}
$$

4.2.21. 148h, Reset Channel Gain Table (Write Only)

Writing a dummy data to this address sets the read pointer of the Channel Gain Table to the beginning of the Table. The write pointer of the Table does not change.

4.2.22. 14Ch, Clear Channel Gain Table (Write Only)

Writing a dummy data to this address sets the read and the write pointer of the Channel Gain Table to the beginning of the Table. Table 4.1.5. shows the D/A Control Function Group. This function is used to configure the D/A output channels, DAC1 and DAC2, on the PCI4520/DM7520/SDM7540/8540 as follows:

4.2.23. 150h, D/A1 output type / range (Write Only)

Writing this address sets the voltage output range and polarity for DAC1:

$$
\begin{aligned}
& 0 \times 0=0-5 \mathrm{~V} \text { range } \\
& 0 \times 1=0-10 \mathrm{~V} \text { range } \\
& 0 \times 2= \pm 5 \mathrm{~V} \text { range } \\
& 0 \times 3= \pm 10 \mathrm{~V} \text { range }
\end{aligned}
$$

4.2.24. 154h, D/A1 update source (Write Only)

Writing this address selects the update source for D/A1.

$$
\begin{aligned}
& 0 \times 0=\text { Software D/A1 Update (a dummy write to } 14 \mathrm{~h}) \\
& 0 \times 1=\text { CGT controlled D/A1 Update } \\
& 0 \times 2=\text { D/A Clock (source is output of D/A clock counter) } \\
& 0 \times 3=\text { External pacer clock } \\
& 0 \times 4=\text { SyncBus } 0 \\
& 0 \times 5=\text { SyncBus } 1 \\
& 0 \times 6=\text { SyncBus } 2
\end{aligned}
$$

The CGT Controlled Update assures simultaneous D/A update with the A/D conversion.

4.2.25. 158h, D/A1 Cycle Mode (Write Only)

This bits enables the cycle mode for D/A1 converter. By writing $0 x 01$, D/A1 will continuously repeat the data that is stored in the D/A1 FIFO. This is useful for waveform generation.

$$
\begin{aligned}
& 0 \times 0=\text { not cycle } \\
& 0 \times 1=\text { cycle }
\end{aligned}
$$

4.2.26. 15Ch, Reset D/A1 FIFO (Write Only)

Writing a dummy data to this address sets the read pointer of the D/A1 FIFO to the beginning of the FIFO. The write pointer of the FIFO does not change.

4.2.27. 160h, Clear D/A1 FIFO (Write Only)

Writing a dummy data to this address sets the read and the write pointer of the D/A1 FIFO to the beginning of the FIFO.

4.2.28. 164h, D/A2 output type / range (Write Only)

Writing this address sets the voltage output range and polarity for DAC1:

$$
\begin{aligned}
& 0 \times 0=0-5 \mathrm{~V} \text { range } \\
& 0 \times 1=0-10 \mathrm{~V} \text { range } \\
& 0 \times 2= \pm 5 \mathrm{~V} \text { range } \\
& 0 \times 3= \pm 10 \mathrm{~V} \text { range }
\end{aligned}
$$

4.2.29. 168h, D/A2 update source (Write Only)

Writing this address selects the update source for D/A2.

```
0x0 = Software D/A1 Update (a dummy write to 18h)
0x1 = CGT controlled D/A1 Update
0x2 = D/A Clock (source is output of D/A clock counter)
0x3 = External pacer clock
0x4 = SyncBus 0
0x5 = SyncBus 1
0x6 = SyncBus 2
```

The CGT Controlled Update assures simultaneous D/A update with the A/D conversion.

4.2.30. 16Ch, D/A2 Cycle Mode (Write Only)

This bits enables the cycle mode for D/A2 converter. By writing 0x01, D/A2 will continuously repeat the data that is stored in the D/A1 FIFO. This is useful for waveform generation.

$$
\begin{aligned}
& 0 \times 0=\text { not cycle } \\
& 0 \times 1=\text { cycle }
\end{aligned}
$$

4.2.31. 170h, Reset D/A2 FIFO (Write Only)

Writing a dummy data to this address sets the read pointer of the D/A2 FIFO to the beginning of the FIFO. The write pointer of the FIFO does not change.

4.2.32. 174h, Clear D/A2 FIFO (Write Only)

Writing a dummy data to this address sets the read and the write pointer of the D/A2 FIFO to the beginning of the FIFO.

4.2.33. 178h, A/D Sample Counter Source Select (Write Only)

Writing this address the A/D Sample Counter Clock can be selected:

$$
\begin{aligned}
& 0 \times 0=\text { Reset Channel Gain Table } \\
& 0 \times 1=\text { A/D FIFO write }
\end{aligned}
$$

If you want to count all of the sampled analog data select the A/D FIFO write argument. If you want to count the CGT periods select the Reset Channel Gain Table argument.

4.2.34. 180h, Pacer Clock Select (Write Only)

Selects the internal Pacer Clock, which is the output of internal Pacer Clock generator or an external Pacer Clock routed onto the board through External I/O connector:

$$
\begin{aligned}
& 0 \times 0=\text { External Pacer Clock } \\
& 0 \times 1=\text { Internal Pacer Clock }
\end{aligned}
$$

The maximum Pacer Clock rate supported by the board is 1.25 MHz .

4.2.35. 184h, SyncBus 0 Source Select (Write Only)

This function selects the source of the SyncBus 0 signal:

$$
\begin{aligned}
& 0 \times 0=\text { Software A/D Start } \\
& 0 \times 1=\text { Pacer Clock } \\
& 0 \times 2=\text { Burst Clock } \\
& 0 \times 3=\text { Digital Interrupt } \\
& 0 \times 4=\text { External Trigger } \\
& 0 \times 5=\text { Software Simultaneous D/A1 and D/A2 Update } \\
& 0 \times 6=\text { D/A Clock } \\
& 0 \times 7=\text { User TC } 2 \text { out }
\end{aligned}
$$

The SyncBus is a 3-line synchronization purpose bus to synchronize the operation of multiple PCI4520/DM7520/SDM7540/8540 or other RTD DAQ Boards (PCI4400). The source of signals can be the same and can be on the other PCI4520/DM7520/SDM7540/8540 boards.

4.2.36. 188h, Enable SyncBus 0 (Write Only)

This function enables the SyncBus 0 buffer

$$
\begin{aligned}
& 0 \times 0=\text { disable } \\
& 0 \times 1=\text { enable }
\end{aligned}
$$

NOTE: When connecting SyncBus signals together ensure that each signal has only one driver.

Figure 4.2.3. The SyncBus structure

4.2.37. 18Ch, SyncBus 1 Source Select (Write Only)

This function selects the source of the SyncBus 1 signal:

```
0x0 = Software A/D Start
0x1 = Pacer Clock
0x2 = Burst Clock
0x3 = Digital Interrupt
0x4 = External Trigger
0x5 = Software Simultaneous D/A1 and D/A2 Update
0x6 = D/A Clock
0x7 = User TC2 out
```

The SyncBus is a 3-line synchronization purpose bus to synchronize the operation of multiple PCI4520/DM7520/SDM7540/8540 or other RTD DAQ Boards. The source of signals can be the same and can be on the other PCI4520/DM7520/SDM7540/8540 boards.

4.2.38. 190h, Enable SyncBus 1 (Write Only)

This function enables the SyncBus 1 buffer

$$
\begin{aligned}
& 0 \times 0=\text { disable } \\
& 0 \times 1=\text { enable }
\end{aligned}
$$

NOTE: When connecting SyncBus signals together ensure that each signal has only one driver.

4.2.39. 198h, SyncBus 2 Source Select (Write Only)

This function selects the source of the SyncBus 2 signal:

```
0x0 = Software A/D Start
0x1 = Pacer Clock
0x2 = Burst Clock
0x3 = Digital Interrupt
0x4 = External Trigger
0x5 = Software Simultaneous D/A1 and D/A2 Update
0x6 = D/A Clock
0x7 = User TC2 out
```

The SyncBus is a 3-line synchronization purpose bus to synchronize the operation of multiply PCI4520/DM7520/SDM7540/8540 or other RTD DAQ Boards. The source of signals can be the same and can be on the other PCI4520/DM7520/SDM7540/8540 boards.

4.2.40. 19Ch, Enable SyncBus 2 (Write Only)

This function enables the SyncBus 1 buffer

$$
\begin{aligned}
& 0 \times 0=\text { disable } \\
& 0 \times 1=\text { enable }
\end{aligned}
$$

NOTE: When connecting SyncBus signals together ensure that each signal has only one driver.

4.2.41. 1A4h, External Trigger polarity select (Write Only)

This function selects the active polarity of External Trigger signal from the I/O connector

$$
\begin{aligned}
& 0 \times 0=\text { positive edge } \\
& 0 \times 1=\text { negative edge }
\end{aligned}
$$

4.2.42. 1A8h, External Interrupt polarity select (Write Only)

This function selects the active polarity of the External Interrupt signal:

$$
\begin{aligned}
& 0 \times 0=\text { positive edge } \\
& 0 \times 1=\text { negative edge }
\end{aligned}
$$

The External Interrupt signal comes from the External I/O connector. The External Interrupt may be a source of built-in priority Interrupt Controller.

The following section shows the User TC Configuration Function Group. The User TC is a 8254 chip with three timer, which can be used by the user. The clock gate sources can be programmed by this Function Group.

4.2.43. 1ACh, User Timer/Counter 0 Clock Select (Write Only)

This function selects the source of the User TC 0 clock signal:

$$
\begin{aligned}
& 0 \times 0=8 \mathrm{MHz} \\
& 0 \times 1=\text { Ext. TC Clock } 1 \\
& 0 \times 2=\text { Ext. TC Clock } 2 \\
& 0 \times 3=\text { Ext. Pacer Clock }
\end{aligned}
$$

4.2.44. 1B0h, User Timer/Counter 0 Gate Select (Write Only)

This function selects the source of the User TC 0 gate signal:

$$
\begin{aligned}
& 0 \times 0=\text { Not gated (free running) } \\
& 0 \times 1=\text { Gated (logic high or low) } \\
& 0 \times 2=\text { Ext. TC Gate } 1 \\
& 0 \times 3=\text { Ext. TC Gate } 2
\end{aligned}
$$

4.2.45. 1B4h, User Timer/Counter 1 Clock Select (Write Only)

This function selects the source of the User TC 1 clock signal:

$$
\begin{aligned}
& 0 \times 0=8 \mathrm{MHz} \\
& 0 \times 1=\text { Ext. TC Clock } 1 \\
& 0 \times 2=\text { Ext. TC Clock } 2 \\
& 0 \times 3=\text { Ext. Pacer Clock } \\
& 0 \times 4=\text { User Timer/Counter } 0 \text { out } \\
& 0 \times 5=\text { High-Speed Digital Input Sampling signal }
\end{aligned}
$$

You can cascade timer TC 1 using 0x4. You can use User TC 1 as a Sample Counter for the High Speed Digital Input FIFO.

4.2.46. 1B8h, User Timer/Counter 1 Gate Select (Write Only)

This function selects the source of the User TC 1 gate signal:

```
0x0 = Not gated (free running)
0x1 = Gated (logic high or low)
0x2 = Ext. TC Gate 1
0x3 = Ext. TC Gate 2
0x4 = User Timer/Counter 0 out
```


Figure 4.2.4. User TC section

4.2.47. 1BCh, User Timer/Counter 2 Clock Select (Write Only)

This function selects the source of the User TC 2 clock signal:

```
0x0 = 8MHz
0x1 = Ext. TC Clock 1
0x2 = Ext. TC Clock 2
0x3 = Ext. Pacer Clock
0x4 = User Timer/Counter 1 out
```

You can cascade timer TC 1 using $0 x 4$.

4.2.48. 1C0h, User Timer/Counter 2 Gate Select (Write Only)

This function selects the source of the User TC 2 gate signal:

```
0x0 = Not gated (free running)
0x1 = Gated (logic high or low)
0x2 = Ext. TC Gate 1
0x3 = Ext. TC Gate 2
0x4 = User Timer/Counter 1 out
```


4.2.49. 1C4h, User Output 0 Signal Select (Write Only)

The selected sources are buffered and connected to the External I/O connector. The source of the User Out 0 can be programmed using this function:
$0 x 0=A / D$ Conversion Signal

$$
\begin{aligned}
& 0 \times 1=\mathrm{D} / \mathrm{A} 1 \text { Update } \\
& 0 \times 2=\mathrm{D} / \mathrm{A} 2 \text { Update } \\
& 0 \times 3=\text { Software Programmable (see register } 8 \mathrm{~h} \text {) }
\end{aligned}
$$

4.2.50. 1C8h, User Output 1 Signal Select (Write Only)

The selected sources are buffered and connected to the External I/O connector. The source of the User Out l can be programmed using this function:

```
0x0 = A/D Conversion Signal
0x1 = D/A1 Update
0x2 = D/A2 Update
0x3 = Software Programmable (see register 8h)
```


4.2.51. 1ECh, McBSP A/D FIFO control (Write Only)

This Function enables the automatic sending of the A/D FIFO data to the connected DSP via the McBSP serial connection:

$$
\begin{aligned}
& 0 \times 0=\mathrm{A} / \mathrm{D} \text { FIFO data to DSP is disabled } \\
& 0 \times 1=\mathrm{A} / \mathrm{D} \text { FIFO data to DSP is enabled }
\end{aligned}
$$

This means that this data cannot be read by the host (or other PCI master) via the PCI bus.

4.2.52. 1F0h, McBSP D/A1 and D/A2 FIFO control (Write Only)

This Function enables a connected DSP to write to the D/A1 and D/A2 FIFO via the McBSP serial connection:
$0 \times 0=\mathrm{D} / \mathrm{A} 1$ and D/A2 FIFO data from DSP is disabled
$0 \times 1=\mathrm{D} / \mathrm{A} 1$ and D/A2 FIFO data from DSP is enabled

4.3. Local Address Space 1 (LAS1)

This is a 16bit wide memory mapped address space. Traditional boards use this space for DMA purposes. It can be accessed by word wide (16 bit) single cycle, or double word-wide (32bit) DMA controlled Burst mode read/write instructions. The range size is 16 byte.

This address space is used to transfer data from A/D input FIFO, High Speed Digital Input FIFO, and to the D/A output FIFOs.

You can use 16 bit wide (word) or 32 bit wide (Lword) direct slave read/write instructions. In the case of Lword instruction two word long burst cycle is generated by the CPU. If you use the onboard DMA controller you can use long burst cycles that assures fast data transfer between the board and the CPU .

LAS1 Function		LAS1 Offset 16-bit		Local Base Address
Read Function	Write Function	Host	DSP	Host
Read A/D FIFO	-	0 h		$4000: 0000 \mathrm{~h}$
Read High Speed Digital Input FIFO	-	$4 \mathrm{~h}-0 \times 802$ function set to 0		
-	Write D/A1 FIFO	8h -0×802 function set to 0		
-	Write D/A2 FIFO	Ch $-\quad 0 \times 802$ function set to 0		

Table 4.3.1.

4.3.1. 0h, Read A/D FIFO (Read only)

4.3.1.1. 12Bit Boards - PCI4520/DM7520/SDM7540/8540

A read provides the 12 -bit A/D converted data as shown below. Bit 15 is the sign bit extension. This sign bit extension gives the opportunity to read the converted data as two's complement number in either unipolar or bipolar mode. The bottom three bits are the samples of the buffered version of the External I/O connector Port 0 Digital I/O port P0-5, P0-6, P0-7 lines which can be used as independent Data Markers. The sampling is simultaneous with this read instruction.

B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0

B0: P0-5
B1: $\quad \mathrm{P} 0-6$
B2: $\quad \mathrm{P} 0-7$
B3: A/D bit 1
B4: \quad A/D bit 2
B5: A/D bit 3
B6: A/D bit 4
B7: \quad A/D bit 5
B8: A/D bit 6
B9: A/D bit 7
B10: A/D bit 8
B11: A/D bit 9
B12: A/D bit 10
B13: A/D bit 11
B14: A/D bit 12
B15: Sign bit

4.3.2. 4h, Read High Speed Digital Input FIFO (Read only)

A read provides the 8-bit High Speed Digital Input Data bits which are programmable source sampled. The High Speed Digital Input lines are commonly used with the Digital I/O, bit programmable P0 port and can be used as independent Data Markers. The upper byte is undefined.

B15-B8	B7	B6	B5	B4	B3	B2	B1	B0

B0:	$\mathrm{P} 0-0$
B1:	$\mathrm{P} 0-1$
B2:	$\mathrm{P} 0-2$
B3:	$\mathrm{P} 0-3$
B4:	$\mathrm{P} 0-4$
B5:	$\mathrm{P} 0-5$
B6:	$\mathrm{P} 0-6$
B7:	$\mathrm{P} 0-7$

B15-B8: Undefined

4.3.3. 8h, Write D/A1 FIFO (Write only)

4.3.3.1. 12Bit Boards - PCI4520/DM7520/SDM7540/8540

A write programs the D/A1 FIFO in the format shown below, as two's complement data. A write also sets the D/A1 data markers. The buffered version of D/A1 data marker 0 is connected to the I/O connector. It can be used as a source for the A/D Sample signal. This register can also be written to via the McBSP connection. In this mode the D/A selection bit (bit 2) controls the data direction to the D/A1 or D/A2 FIFO. PCI4520 has no McBSP connection.

B0: D/A1 digital Output Data Marker 0
B1: D/A1 digital Output Data Marker 1
B2: $\quad 0 \mathrm{D} / \mathrm{A} 1$ receives McBSP Data; 1 D/A2 receives McBSP Data (McBSP mode only)
B3: D/A1 bit 1 (unless using McBSP, then see bit 2)
B4: D/A1 bit 2 (unless using McBSP, then see bit 2)
B5: D/A1 bit 3 (unless using McBSP, then see bit 2)
B6: D/A1 bit 4 (unless using McBSP, then see bit 2)
B7: D/A1 bit 5 (unless using McBSP, then see bit 2)
B8: D/A1 bit 6 (unless using McBSP, then see bit 2)
B9: D/A1 bit 7 (unless using McBSP, then see bit 2)
B10: D/A1 bit 8 (unless using McBSP, then see bit 2)
B11: D/A1 bit 9 (unless using McBSP, then see bit 2)
B12: D/A1 bit 10 (unless using McBSP, then see bit 2)
B13: D/A1 bit 11 (unless using McBSP, then see bit 2)
B14: D/A1 bit 12 (unless using McBSP, then see bit 2)
B15: D/A1 sign bit

4.3.4. Ch, Write D/A2 FIFO (Write only)

4.3.4.1. 12Bit Boards - PCI4520/DM7520/SDM7540/8540

A write programs the D/A2 FIFO in the format shown below, as two's complement data. A write also sets the D/A2 data markers. The buffered version of D/A2 data marker 0 is connected to the I/O connector. It can be used as a source for the A/D Sample signal. This register can also be written to via the McBSP connection. In this mode the D/A selection bit (bit 2) controls the data direction to the D/A1 or D/A2 FIFO. PCI4520 has no McBSP connection.

B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0

B0: D/A2 digital Output Data Marker 0
B1: D/A2 digital Output Data Marker 1
B2: $\quad 0$ D/A1 receives McBSP Data; 1 D/A2 receives McBSP Data (McBSP mode only)
B3: D/A2 bit 1 (unless using McBSP, then see bit 2)
B4: D/A2 bit 2 (unless using McBSP, then see bit 2)
B5: D/A2 bit 3 (unless using McBSP, then see bit 2)
B6: D/A2 bit 4 (unless using McBSP, then see bit 2)
B7: D/A2 bit 5 (unless using McBSP, then see bit 2)
B8: D/A2 bit 6 (unless using McBSP, then see bit 2)
B9: D/A2 bit 7 (unless using McBSP, then see bit 2)
B10: D/A2 bit 8 (unless using McBSP, then see bit 2)
B11: D/A2 bit 9 (unless using McBSP, then see bit 2)
B12: D/A2 bit 10 (unless using McBSP, then see bit 2)
B13: D/A2 bit 11 (unless using McBSP, then see bit 2)

B14: D/A2 bit 12 (unless using McBSP, then see bit 2)
B15: D/A2 sign bit

5. A/D Conversion

This chapter shows you how to program your PCI4520/DM7520/SDM7540/8540 to perform A/D conversions and read the results. Included in this discussion are instructions on setting up the Channel Gain Table (CGT), the on-board clocks and sample counter, and various conversion and triggering modes. The following paragraphs walk you through the programming steps for performing A/D conversions. Detailed information about the conversion modes and triggering is presented in this section. You can follow these steps in the example programs included with the board.

5.1. Before Starting Conversions: Initializing the Board

Regardless of the conversion mode you wish to set up, you should always start your program with a board initialization sequence. This sequence should include:

- Clear Board command
- Clear IRQ command
- Clear Channel Gain Table command
- Clear A/D FIFO command
- Clear D/A FIFOs commands
- Clear Digital I/O chip

This initialization procedure clears all board registers, empties the Channel Gain Table, resets the digital I/O chip and empties the A/D and D/A FIFOs.

5.1.1. Before Starting Conversions (single-channel mode): Programming Channel, Gain, Input Range and Type using Channel Gain Latch (CGL)

Setting up these things can be done using the Channel Gain Latch (single-channel mode) or using the Channel Gain Table (multi-channel mode) The CGL can be filled up by Function 0x301. The Channel Gain Latch has very similar structure to the Channel Gain Table, so all operations are explained in the next sections of CGT.

5.1.2. Before Starting Conversions (multi-channel mode): Programming the Channel-Gain Table (CGT)

The Channel Gain Table can be programmed with 1024 24-bit entries in tabular format. Sixteen bits contain the A/D channel-gain data (A/D Table), and 8 bits contain digital control data (Digital Table) to support complex channel-gain sequences. To load a new Channel Gain Table, first: clear the Channel Gain Table by Function 0x030F (see Table 4.1.4.). To add entries to an existing table, simply write to the A/D Table (and Digital Table if used) as described in the following paragraphs. Note that writing beyond the end of the table is ignored.

5.1.3. 16-Bit A/D Table

The A/D portion of the Channel Gain Table with the channel, gain, input range, input type, pause and skip bit information is programmed into the channel-gain scan memory using the Function 0x300. If you have cleared the existing table, the first word written will be placed in the first entry of the table, the second word will be placed in the second entry, and so on. If you are adding to an existing table, the new data written will be added at the end.

5.1.4. Channel Select, Gain Select, Input Range and Input Type

The channel number, gain value, input range and input type are entered in the table using bits 0 through 10. Each of these parameters can be set independently for every entry in the table. This allows you to set up a complex array of sampling sequences mixing channels, gains, input ranges and input types. Care must be taken in selecting the proper input type. The board is capable of 16 single-ended inputs or 8 differential inputs. You can select combinations of single-ended and differential but each differential channel actually uses 2 single-ended channels. If you select channel 1 to be a differential channel, you must connect your signal to AIN1+ and AIN1-. Channel 8 now is not available as a single-ended channel. In the case of single ended mode you can choose the Ground Referenced Single Ended (GRSE mode) or the Non Referenced Single Ended Mode (NRSE). See Chapter 2.

5.1.5. Pause bit

Bit 11 is used as a pause bit. If this bit is set to a "1" and the Pause function is enabled by Function $0 x 0305$, the A / D conversions will stop at this entry in the table and resume on the next Start Trigger. This is useful if you have 2 different sequences loaded in the table. You can enable and disable this bit's function by Function 0×305. In the case of single channel mode, when the CGL is used this function is meaningless. NOTE: This bit is ignored in the Burst sampling modes.

5.1.6. D/Ax update bits

Bit 12, 13 is used for simultaneous update of the D/Ax converter with the sampling of the appropriate analog input channel. When these bits are in high state a D / A update signal is generated at the sampling time of the analog input.

5.1.7. Skip bit

If bit 14 of the data loaded is set to 1 , then the skip bit is enabled and this entry in the channel-gain table will be skipped, meaning an A/D conversion will be performed but the data is not written into the A/D FIFO. This feature provides an easy way to sample multiple channels at different rates without saving unwanted data. A simple example illustrates this bit's function.
In this example, we want to sample channel 1 once each second and channel 4 once every three seconds. First, we must program 6 entries into the channel-gain table. The channel 4 entries with the skip bit set will be skipped when A/D conversions are performed. The table will continue to cycle until a stop trigger is received.

Next, we will set the pacer clock to run at 2 Hz (0.5 seconds). This allows us to sample each channel once per second, the maximum sampling rate required by one of the channels (pacer clock rate $=$ number of different channels sampled x fastest sample rate). The first clock pulse starts an A/D conversion according to the parameters set in the first entry of the channel-gain table, and each successive clock pulse incrementally steps through the table entries. As shown in Figure 5-1 and Figure 5-2, the first clock pulse starts a sample on channel 1. The next pulse looks at the second entry in the channel-gain table and sees that the skip bit is set to 1 . No A/D data is stored. The third pulse starts a sample on channel 1 again, the fourth pulse skips the next entry, and the fifth pulse takes our third reading on channel 1 . On the sixth pulse, the skip bit is disabled and channel 4 is sampled. Then the sequence starts over again. Samples are not stored when they are not wanted, saving memory and eliminating the need to throw away unwanted data.

5.1.8. 8-Bit Digital Table

The digital portion of the channel-gain table can be programmed with digital control information using the Write Digital Table Function 0x0302. If you have cleared the existing table by the CGT clear Function 0x030F, the first byte written will be placed in the first entry of the table, the second byte will be placed in the second entry, and so on. If you are adding to an existing table, the new data written will be added at the end. The first entry made into the Digital Table lines up with the first entry made into the A / D Table, the second entry made into the Digital Table lines up with the second entry made into the A/D Table, and so on. Make sure that, if you add to an existing table and did not program the Digital Table portion when you made your A/D Table entries previously, you fill those entries with digital data first before entering the desired added data. Since the first digital entry you make always lines up with the first A/D entry made, failure to do this will cause the A / D and digital control data to be misaligned in the table. You cannot turn the digital control lines off for part of a conversion sequence and then turn them on for the remainder of the sequence. Note that the digital data programmed here is sent out on the Port 1 digital I/O lines whenever this portion of the table is enabled by the Function 0x0304.

These lines can be used to control input expansion boards such as the TMX32 analog input expansion board at the same speed as the A/D conversions are performed with no software overhead.
NOTE: If you only need to use the A/D part of the table, you do not have to program the Digital Table. However if you only want to use the Digital part of the table you must program the A/D part of the table.

5.1.9. Setting Up A/D part and Digital part of Channel Gain Table

Let's look at how the Channel Gain Table is set up for a simple example using both the A/D and Digital Tables. In this example, we have a TMX32 expansion board connected to channel 1 on the PCI4520/DM7520/SDM7540/8540. Load the channel-gain sequence into the A/D Table (Function 0x0300):

| Entry 1 | 0000000000000000 gain $=1$, channel number $=1$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Entry 2 | 0000000000100000 gain $=4$, channel number $=1$ |
| Entry 3 | 010000000000000 skip sample |
| Entry 4 | 0000000000100000 gain $=4$, channel number $=1$ |
| Entry 5 | 0000000000000000 gain $=1$, channel number $=1$ |
| Entry 6 | 0000000000100000 gain $=4$, channel number $=1$ |

Load the digital data into the Digital Table by Function 0x0302. The first digital word loaded lines up with the first A/D Table entry, and so on:

```
Entry 1 0000 0000 0000 0000 gain=1 PCI4520/DM7520/SDM7540/8540 channel=1 0000 0000 TMX32
channel=1
Entry 2 0000 0000 0010 0000 gain=4 PCI4520/DM7520/SDM7540/8540 channel=1 0000 0011 TMX32
channel=4
Entry 3 0000 1000 0000 0000 skip sample 0000 0000 TMX32 channel=1 (skip)
Entry 4 0000 0000 0010 0000 gain=4 PCI4520/DM7520/SDM7540/8540 channel=1 0000 0011 TMX32
channel=4
Entry 5 0000 0000 0000 0000 gain=1 PCI4520/DM7520/SDM7540/8540 channel=1 0000 0000 TMX32
channel=1
Entry 6 0000 0000 0010 0000 gain=4 PCI4520/DM7520/SDM7540/8540 channel=1 0000 0011 TMX32
channel=4
```


5.1.10. Using the Channel Gain Table for A/D Conversions

After the Channel Gain Table is programmed, it must be enabled in order to be used for A/D conversions by Function 0x0303. The Digital Table can be enabled by Function 0x0304 when the digital control data is stored. You cannot use the Digital Table without enabling the Channel Gain Table. When the Digital Table is enabled, the 8 -bit data is sent out on the Port 1 digital I/O lines.

When you are using the channel-gain table to take samples, it is strongly recommended that you do not enable, disable, and then re-enable the table while performing a sequence of conversions. This causes skipping of an entry in the table. In this case you should issue a reset table command by Function 0x030E.

5.1.11. Channel-gain Table and Throughput Rates

When using the Channel Gain Table, you should group your entries to maximize the throughput of your module. Low-level input signals and varying gains are likely to drop the throughput rate because low level inputs must drive out high level input residual signals. To maximize throughput:

- Keep channels configured for a certain range grouped together, even if they are out of sequence.
- Use external signal conditioning if you are performing high speed scanning of low level signals. This increases throughput and reduces noise.
- If you have room in the channel-gain table, you can make an entry twice to make sure that sufficient settling time has been allowed and an accurate reading has been taken. Set the skip bit for the first entry so that it is ignored.
- For best results, do not use the channel-gain table when measuring steady-state signals. Use the single convert mode to step through the channels.

5.2. A/D Conversion Modes

To support a wide range of sampling requirements, the PCI4520/DM7520/SDM7540/8540 provides several conversion modes with a selection of trigger sources to start and stop a sequence of conversions. Understanding how these modes and sources can be configured to work together is the key to understanding the A/D conversion capabilities of your module.

The following paragraphs describe the conversion and trigger modes.

5.2.1. Start A/D Conversion signal

Using the Function 0×0200 one of nine modes can be selected as A / D conversion signal as can be seen on Figure 5.2.1.

Figure 5.2.1.

- Software A/D Start (by writing LAS0+8h to initiate a Start Convert)
- Pacer Clock (internal TC - see Figure 4.1.4 -or external)
- Burst Clock (internal TC - see Figure 4.1.4)
- Digital Interrupt generated by the Advanced Digital Interrupt circuit
- D/A 1 Data Marker 1* for simultaneous A/D conversion with D/A update
- D/A 2 Data Marker 1* for simultaneous A/D conversion with D/A update
- SyncBus signals (three lines)

5.2.2. Pacer Clock Start/Stop Trigger Select.

The Pacer Clock start trigger can be set by the Function 0x0202. The Pacer Clock stop trigger can be set by the Function 0x0203. This functions can be used to turn the pacer clock (internal or external) on and off. Through these different combinations of start and stop triggers, the

PCI4520/DM7520/SDM7540/8540 supports pre-trigger, post-trigger, and about-trigger modes with various trigger sources.

The Pacer Clock start trigger sources are:

- Software Pacer Start When selected, a read at LAS0+14h will start the Pacer Clock.
- External trigger When selected, a positive- or negative-going edge (depending on the setting of the trigger polarity, Function 0x0601) on the external TRIGGER INPUT line, will start the pacer clock. The pulse duration should be at least 100 nanoseconds.
- Digital interrupt When selected, a digital interrupt -generated by Advanced Digital I/O chip - will start the Pacer Clock.
- User TC 2 out When selected, a pulse on the User Timer/Counter 2 - see Figure 4.1.7. - output line (Counter 2's count reaches 0) will start the pacer clock.
- SyncBus 0.. 2 When selected a positive edge on the SyncBus 0 line will start the pacer clock.

The following start trigger sources provide delayed triggering. When the trigger is issued, the A / D delay counter - see Figure 4.1.5. -, counts down and conversions are started when the A/D delay counter reaches 0 . The A/D delay counter counts at the pacer clock rate.

- Delayed Software Pacer Start. When selected, a read at LAS0+14h will start the delay counter.
- Delayed external trigger. When selected, a positive- or negative-going edge (depending on the setting of the trigger polarity, bit 11 in the Control Register) on the external TRIGGER INPUT line, will start the delay counter. The pulse duration should be at least 100 nanoseconds.
- Delayed digital interrupt. When selected, a digital interrupt will start the delay counter.
- Delayed User TC Counter 2 output. When selected, a pulse on the Counter 2 output line (Counter 2's count reaches 0) will start the delay counter.
- Delayed SyncBus 0.. 2 When selected, a pulse on the SyncBus0 will start the delay counter.
- External Trigger Gated mode. When selected, the pacer clock runs when the external TRIGGER INPUT line is held high. When this line goes low, conversions stop. This trigger mode does not use a stop trigger. If the trigger polarity bit is set for negative, the pacer clock runs when this line is low and stops when it is taken high.

The Pacer Clock stop trigger sources are:

- Software Pacer Stop trigger. When selected, a write at LAS0+14h will stop the Pacer Clock.
- External trigger. When selected, a positive- or negative-going edge (depending on the setting of the trigger polarity, setting up by Function 0x602) on the external TRIGGER INPUT line, will stop the Pacer Clock. The pulse duration should be at least 100 nanoseconds.
- Digital interrupt. When selected, a digital interrupt will stop the pacer clock.
- About Counter. When selected, the Pacer Clock stops when the About Counter's count reaches 0. About Counter counts samples which are written into the A/D FIFO
- User TC2 out When selected, the Pacer Clock stops when the User TC 2 counter's count reaches 0.
- SyncBusO.. 2 signals When selected, the Pacer Clock stops when there is a rising edge on the SyncBus line.

The following stop trigger sources provide ABOUT triggering, where data is acquired from the time the start trigger is received, and continues for a specified number of samples after the stop trigger. The number of samples to acquire after the stop trigger is programmed in the About Counter. About Counter counts samples which are written into the A/D FIFO

- About Software Pacer Stop trigger. When selected, a Software Pacer Stop trigger starts the About counter, and sampling continues until the About Counter's count reaches 0.
- About external trigger. When selected, an external trigger starts the About counter, and sampling continues until the sample counter's count reaches 0 .
- About digital interrupt. When selected, a digital interrupt starts the About Counter, and sampling continues until the About Counter's count reaches 0 .
- About User TC Counter 2 output. When selected, a pulse on the User Timer Counter 2 output line (Counter 2's count reaches 0) starts the About Counter, and sampling continues until the About Counter's count reaches 0 .
- About SyncBusO.. 2. When selected, a rising edge on SyncBus0.. 2 starts the About Counter, and sampling continues until the About Counter's count reaches 0 .

Note that the external trigger (TRIGGER INPUT) can be set to occur on a positive-going edge or a negative-going edge, depending on the setting up the Function 0x0602.

Burst Clock Start Trigger to trigger burst sample.

The following paragraph describes the operation when the A/D conversion start signal is selected as Burst Clock. Burst clock is an output of Timer Counter See Figure 4.1.4. The clock signal of the Burst Clock Timer Counter is 8 MHz or 20 MHz . The gate signal of this TC is used to start and stop the Burst Clock. The start signal can be select from the following list, and the stop is derived from the empty signal of Channel Gain Table. The Burst Clock operation belongs to the Multichannel - Channel Gain Table operation.

The start triggers can be set by Function 0x0201:

- Software A/D start (by writing LAS0+8h)
- Pacer Clock (internal or external)
- external TRIGGER INPUT
- Digital Interrupt
- SyncBus0.. 2

Single Cycle Mode, Trigger Repeat mode.

Using the Pacer Start Mode select Function 0x0205 the Single Cycle mode or the Trigger Repeat Mode can be selected. This function controls the conversion sequence when using a trigger to start the Pacer Clock. When the Function argument is low, the first pulse on the selected Pacer Clock Start Trigger source will start the pacer clock. After the stop trigger has ended the conversion cycle, the triggering circuit is disarmed and must be rearmed before another start trigger can be recognized. To rearm this trigger circuit, you must issue a Software A/D Start command (Write LAS0+8h).

When Function argument is high, the conversion sequence is repeated each time a selected Pacer Clock Start Trigger is received.

Pacer Clock Source.

The Pacer Clock can be generated from an internal source or an external source using the Function 0x0509.

5.2.3. Types of Conversions

Single Conversion.

In this mode, a single specified channel is sampled whenever the Software A/D Start Command is occurred. The active channel is the one specified in the Channel Gain Latch. This is the easiest of all conversions. It can be used in a wide variety of applications, such as sample every time a key is pressed on the keyboard, sample with each iteration of a loop, or watch the system clock and sample every five seconds.

Multiple Conversions.

In this mode, conversions are continuously performed at the Pacer Clock rate, or other selected A/D Conversion Signal rate. The pacer clock can be internal or external. The maximum rate supported by the board is 1.25 MHz . The Pacer Clock can be turned on and off using any of the start and stop triggering modes using the Function 0×202, and 0×203. If you use the internal pacer clock, you must program it to run at the desired rate.

This mode is ideal for filling arrays, acquiring data for a specified period of time, and taking a specified number of samples.

Random Channel Scan.

In this mode, the Channel Gain Table is incrementally scanned through, with each selected A/D Conversion Signal pulse starting a conversion at the channel and gain specified in the current table entry. Before starting a conversion sequence Channel Gain Table, you need to load the table with the desired data. Then make sure that the Channel Gain Table is enabled by the Function 0x0303. This enables the A/D portion of the Channel Gain Table. If you are using the Digital Table as well, you must also enable this using the Function 0x0304. Each rising edge of selected A/D Conversion Signal starts a conversion using the current Channel Gain data and then increments to the next position in the table. When the last entry is reached, the next pulse starts the table over again.

Programmable Burst.

In this mode, a single trigger initiates a scan of the entire Channel-gain table. Before starting a burst of the channel-gain table, you need to load the table with the desired data. Then make sure that the channel-gain table is enabled. If you are using the Digital Table as well, you must also enable it.

Burst is used when you want one sample from a specified number of channels for each trigger. The burst trigger, which is a trigger or pacer clock, triggers the burst and the burst clock initiates each conversion. At high speeds, the burst mode emulates simultaneous sampling of multiple input channels. For time critical simultaneous sampling applications, a simultaneous sample-and-hold board can be used (SS8 eight-channel boards are available from RTD).

Programmable Multiscan.

This mode - when the A/D Conversion Start Signal is the Burst Clock - lets you scan the Channel Gain Table after a Burst Clock Start Signal. When the Channel Gain Table is empty the Burst Clock is stopped, and waiting for a new Start Signal.

As you can see, the PCI4520/DM7520/SDM7540/8540 is designed to support a wide range of conversion requirements. You can set the clocks, triggers, and channel and gain to a number of configurations to perform simple or very complex acquisition schemes where multiple bursts are taken at timed intervals. Remember that the key to configuring the board for your application is to understand what signals can actually control conversions and what signals serve as triggers. The discussions presented in this section and the example programs on the disk should help you to understand how to configure the board.

Starting an A/D Conversion

Depending on your conversion and trigger settings, the Software A/D Start command (Write LAS0 $+010 h$) has different functions. In any mode that uses the Software A/D Start command, this command will do the appropriate action. In any mode that does not use the Software A/D Start command as the trigger, you will still need to do a write the LASO +010 h to arm (enable) the triggering circuitry. An example of this would be, if you set the Pacer Clock Start Trigger as external trigger, write the LAS0 +010 h is required to arm the external trigger circuitry. After you have set all the trigger and conversion registers to the proper values, the last command will need to be Software A/D Start. Any external triggers received before this command will be ignored. It is also a good practice to clear the A/D FIFO just prior to triggering the measurement or arming the trigger. Study the example programs to see this sequence.

Conversion Status Monitoring

The A/D conversion status can be monitored through the A/D FIFO empty flag in the FIFO status word read at LAS0 +8 h . Typically, you will want to monitor the Empty flag (active low) for a transition from low to high. This tells you that a conversion is complete and data has been placed in the sample buffer.

Halting Conversions

In single convert modes, a single conversion is performed and the module waits for another Software A/D Start command. In multi-convert modes, conversions are halted by one of two methods: when a stop trigger has been issued to stop the pacer clock, or when the FIFO is full. The Pacer Clock Shut Down Flag, bit 4 of the status word (LAS0 +02 Ch), is set when the sample buffer is full, disabling the A/D
converter. Even if you've removed data from the sample buffer since the buffer filled up and the FIFO full flag is no longer set, the Pacer Clock Shut Down Flag will confirm that at some point in your conversion sequence, the sample buffer filled and conversions were halted. At this point a clear A/D FIFO command must be issued and a Software A/D Start convert (write at LAS0 + 010h) to rearm the trigger circuitry.

5.3. Reading the Converted Data

Each 12-bit conversion is stored in a 16-bit word in the sample buffer, in the A/D FIFO. The buffer can store 1024 samples. This section explains how to read the data stored in the sample buffer.

The sample buffer - A/D FIFO contains the converted data and 3-bit data marker (if used) in a 16bit word.

The 12-bit A/D data + sign bit are left justified in a 16-bit word, with the least significant three bits reserved for the data marker. Because of this, the A/D data read must be scaled to obtain a valid A/D reading. The data marker portion should be masked out of the final A/D result. Shifting the word three bits to the right will eliminate the data marker from the data word. If you are using the data marker, then you should preserve these bits someplace in your program.

The output code format is always two's complement. This is true for both bipolar and unipolar signals since the sign bit is added above the 12 -bit conversion data. For bipolar conversions, the sign bit will follow the MSB of the 12-bit data. If this bit is a " 0 ", the reading is a positive value. If this bit is a " 1 ", the reading is a negative value. When the input is a unipolar range, the coding is the same except that the sign bit is always a " 0 " indicating a positive value. The data should always be read from the A/D FIFO as a signed integer.

Voltage values for each bit will vary depending on input range and gain. For example, if the input is set for ± 5 volts and the gain $=1$, the formula for calculating voltage is as follows:

Voltage $=(($ input range $/$ Gain $) / 4096) \times$ Conversion Data
Voltage $=((10 / 1) / 4096) \times$ Conversion Data
Voltage $=2.44 \mathrm{mV}$ x Conversion Data
Remember that when you change the gain, you are increasing the resolution of the bit value but you are decreasing the input range. In the above example if we change the gain to 4 , each bit will now be equal to $610 \mu \mathrm{~V}$ but our input range is decreased from 10 volts to 2.5 volts. The formula would look like this:

$$
\begin{aligned}
& \text { Voltage }=((\text { input range } / \text { Gain }) / 4096) \times \text { Conversion Data } \\
& \text { Voltage }=((10 / 4) / 4096) \times \text { Conversion Data } \\
& \text { Voltage }=610 \mathrm{uV} \times \text { Conversion Data } \\
& \text { If we now change the input range to } \pm 10 \text { volts and the gain }=1, \text { the formula would be: } \\
& \text { Voltage }=((\text { input range } / \text { Gain }) / 4096) \times \text { Conversion Data } \\
& \text { Voltage }=((20 / 1) / 4096) \times \text { Conversion Data } \\
& \text { Voltage }=4.88 \mathrm{mV} \times \text { Conversion Data }
\end{aligned}
$$

5.4. Using the A/D Data Markers

For certain applications where you may want to store digital information with the analog data at the same rate the analog data is being acquired, the bottom three bits of the converted data are available for this feature. For example, you may want to tag the acquired data with a marker so that you know when the data was sampled. Three lines are available at I/O connector to send the data marker settings to the sample buffer along with the 12-bit A/D converted data. These lines are $\mathrm{P} 0.5, \mathrm{P} 0.6$ and P 0.7 .

5.5. Programming the Pacer Clock

The PCI4520/DM7520/SDM7540/8540 has a 24 bit count down on-board pacer clock with $8 \mathrm{MHz} / 20 \mathrm{MHz}$ clock signal. When you want to use the pacer clock for continuous A / D conversions, you must select the Pacer Clock as A/D Conversion Signal and program the clock rate.

The pacer clock is accessed for programming at LAS0 +040 address. To find the value you must load into the clock to produce the desired rate, you first have to calculate the value of Divider for the 24-bit clock. The formulas for making this calculation are as follows:

Pacer Clock frequency $=8$ (20) MHz/(Divider+1)
Divider $=(8$ (20) MHz / Pacer Clock Frequency) -1
The Pacer Clock frequency range is $1.14 \mathrm{MHz} . .0 .47 \mathrm{~Hz}$ defined by the 8 MHz clock frequency, the 24bit wide counter and the 1.25 MHz maximum Sampling frequency.

Pacer Clock	Sampling Cycle Time	Pacer Clock	Sampling Cycle Time	Divider (decimal)
Primary clock -8 MHz See Function 0X0501 (1DCh)		Primary clock - 20MHz See Function 0X0501 (1DCh)		
1.14 MHz	877ns	-	-	6
1 MHz	1us	-	-	7
888.89 kHz	1.125 us	-	-	8
800 kHz	1.25us	-	-	9
500 kHz	2us	1.25 MHz	800ns	15
470.588 kHz	2.15us	1.176 MHz	850ns	16
.
100 kHz	10us	250 kHz	4us	79
.
50 kHz	20us	125 kHz	8us	159
10 kHz	100us	25 kHz	40us	799
1 kHz	1 ms	2.5 kHz	0.4 ms	7999
100 Hz	10 ms	250 Hz	4 ms	79999
10 Hz	100 ms	25 Hz	40 ms	799999
1 Hz	1s	2.5 Hz	0.4 s	7999999
477 mHz	2.09 s	1.19 Hz	0.84s	16777216

Table 5.5.1.
Writing the Divide r into the LAS0 + 040h the Pacer Clock works immediately according to this value. Writing process clears the Counter - generates a Pacer Clock pulse, and loads the Divider value to the Counter.

5.6. Programming the Burst Clock

The PCI4520/DM7520/SDM7540/8540 has a 16-bit count down on-board Burst Clock timer with $8 / 20 \mathrm{MHz}$ clock signal. When you want to use the Burst Clock for performing A/D conversions in the burst mode, you must program the clock rate by writing the LAS0 +044 h . To find the Divider value you must load into the Burst Clock Counter to produce the desired rate, make the following calculation:

The Burst Clock Frequency Range is $1.14 \mathrm{MHz} . .122 \mathrm{~Hz}-8 \mathrm{MHz}$ primary clock, and 1.25 MHz .. $305 \mathrm{~Hz}-20 \mathrm{MHz}$ primary clock.

Burst Clock Frequency $=8 / 20 \mathrm{MHz} /($ Divider +1$)$
Divider $=(8 / 20 \mathrm{MHz} /$ Pacer Clock Frequency $)-1$

Burst Clock	Burst Clock Cycle Time	Burst Clock	Burst Clock Cycle Time	Divider (decimal)
Primary clock - 8MHz See Function 0X0502 (1E0h)		Primary clock - 20MHz See Function 0X0502 (1E0h)		
1.14 MHz	877 ns	-	-	6
1 MHz	1 us	-	-	7
888.89 kHz	1.125 us	-	-	8
800 kHz	1.25 us	-	-	9
500 kHz	2 us	1.25 MHz	800 ns	15
100 kHz	10 us	250 kHz	4 us	79
50 kHz	20 us	125 kHz	8 us	159
10 kHz	100 us	25 kHz	40 us	799
122 Hz	8.1 ms	305.17 Hz	3.2 ms	65535

Table 5.5.2.
For example to set the burst clock frequency at 100 kHz , this equation becomes:
Divider $=(8 \mathrm{MHz} /$ Pacer Clock Frequency $)-1=8 \mathrm{MHz} / 100 \mathrm{kHz}-1=79$
After you determine the divider value that will result in the desired clock frequency, write it into the LAS0 +044 h . Writing the Divider into the LAS0 +044 h the Burst Clock works immediately according to this value. Writing process clears the Counter - generates a Burst Clock pulse, and loads the Divider value to the Counter.

5.7. Programming the About Counter

The About Counter lets you program the PCI4520/DM7520/SDM7540/8540 to take a certain number of samples and then halt conversions. (Select A/D Conversion Signal to Pacer Clock, selects the Pacer Clock Stop Trigger to About Counter) The number of samples minus one to be taken is loaded into the 16 -bit About Counter at LAS0 +058 h.

Note that once the counter is properly loaded and starts, any subsequent countdowns of this count will be accurate.

After you determine the desired number of samples, load the number minus 1 to the About Counter register.

SPECIAL NOTE make sure all registers are set and board and fifos are cleared before enabling interrupts.

5.7.1. Using the About Counter to Create Large Data Arrays

The 16-bit About Counter allows you to take up to 65,535 samples before the count reaches 0 and sampling is halted. Suppose, however, you want to take 100,000 samples and stop. The

PCI4520/DM7520/SDM7540/8540 provides a Function, About Counter Stop Enable 0x0204 which allows you to use the About counter to take more than 65,535 samples in a conversion sequence.

The About Counter stop enable bit can be set to 1 to allow the sample counter to continuously cycle through the loaded count until the stop enable bit is set to 0 , which then causes the sample counter to stop at the end of the current cycle. Let's look back at our example where we want to take 100,000 readings. First, we must divide 100,000 by a whole number that gives a result of less than 65,535 . In our example, we can divide as follows:

Sample Counter Count $=100,000 / 2=50,000$
To use the sample counter to take 100,000 samples, we will load a value of 50,000 into the counter and cycle the counter two times. After the value is loaded, make sure that the Stop Bit is set to 1 so that the sample counter will cycle. Then, set up the sample counter so that it generates an interrupt when the count reaches 0 . Initialize the sample counter as described in the preceding section and start the conversion sequence. When the sample counter interrupt occurs telling you that the count has reached 0 and the cycle is starting again, set the Stop Bit to 0 to stop the sample counter after the second cycle is completed. The result: the sample counter runs through the count two times and 100,000 samples are taken.

6. D/A Conversion

This chapter explains how to perform D/A conversions on the PCI4520/DM7520/SDM7540/8540.
Two independent 12-bit analog output channels are included on the PCI4520/DM7520/SDM7540/8540. The analog outputs are generated by two 12-bit D/A converters with independent software programmable output ranges. Each D/A channel have 1KSample D/A FIFO. The analog output signals are accompanied by two digital data markers, DM0, and DM1. The DM0 bits are buffered and wired to the External I/O Connector. The DM1 bits may be the Start Conversion Signal of A/D converter. The digital data markers are updated simultaneously with the analog output signal.

D/A1 data is written to LAS1 +8 h and D/A2 data is written to LAS1 +Ch . The data are written into the D/A FIFOs, and the Update signals read the FIFOs, and update the D/A converters.

The configuration of D/A channels can be done by D/A1 and D/A2 Function groups ($0 x 400 \ldots$ 0x040F).

The Function 0x0400 (0×0407 for D/A2) sets the voltage output range and polarity for D/A1. The output ranges are $\pm 5, \pm 10,0$ to +5 , or 0 to +10 volts.

The Function 0x0401 selects the update source for D/A1:

- Software D/A1 Update. Write a dummy data to LAS0+14h. (LAS0+18h for D/A2)
- CGT Controlled D/A1 Update If the D12 (D13 for D/A2) bit of CGT is 1 the D/A1 is updated simultaneously with the A/D sampled analog input
- DAC Clock The 16 / (24bit - DM7520/SDM7540/8540) D/A clock inside the control logic.

The PCI4520/DM7520/SDM7540/8540 has a 16-bit count down on-board DAC Clock timer with $8 / 20 \mathrm{MHz}$ clock signal. When you want to use the DAC Clock for performing D/A conversions in the burst mode, you must program the clock rate by writing the LAS $0+05 \mathrm{Ch}$. To find the Divider value you must load into the DAC Clock Counter to produce the desired rate, make the following calculation:

The DAC Clock Frequency Range is $200 \mathrm{kHz} . .0 .47 \mathrm{~Hz}-8 \mathrm{MHz}$ primary clock, and $200 \mathrm{kHz} .$. . $1.19 \mathrm{~Hz}-20 \mathrm{MHz}$ primary clock.

Burst Clock Frequency $=8 / 20 \mathrm{MHz} /($ Divider +1$)$
Divider $=(8 / 20 \mathrm{MHz} /$ Pacer Clock Frequency $)-1$

DAC Clock	DAC Clock Cycle Time	DAC Clock	DAC Clock Cycle Time	Divider (decimal)
Primary clock - 8MHz See Function 0X0503 (1E4h)		Primary clock - 20MHz See Function 0X0503 (1E4h)		
200 kHz	5 us	-	-	39
195.1 kHz	5.125 us	-	-	40
80 kHz	12.5 us	200 kHz	5 us	99
79208 Hz	12.625 us	198.02 kHz	5.05 us	100
10 kHz	100 us	25 kHz	40 us	799
8 kHz	125 us	20 kHz	50 us	999
0.47 Hz	8.1 ms	1.19 Hz	0.838 s	16777215

Table 6.1.
For example to set the DAC clock frequency at 100 kHz , this equation becomes:
Divider $=(8 \mathrm{MHz} / \mathrm{DAC}$ Clock Frequency $)-1=8 \mathrm{MHz} / 100 \mathrm{kHz}-1=79$
After you determine the divider value that will result in the desired clock frequency, write it into the LAS0 +05 Ch . Writing the Divider into the LASO +05 Ch the DAC Clock works immediately according to this value. Writing process clears the Counter - generates a DAC Clock pulse, and loads the Divider value to the Counter. Note, that the DAC clock needs a start command.

- External Pacer Clock The rising edge of External Pacer Clock at the external I/O Connector updates the D/A1. The minimum pulse with is 100 ns .
- SyncBusO... 2 The rising edge of SyncBus signals updates the D/A1. The source of SyncBus signals may be on the same board or on another PCI4520/DM7520/SDM7540/8540 board.

The Function 0x0402 (0x040A for D/A2) selects the cycled or not cycled mode for D/A1. In the case of cycled mode, emptying the D/A1 FIFO the Update pointer of the FIFO is set to the beginning of the data array in the FIFO. This mode can be used for generating periodic signals without any processor intervention. This means that setting this bit to a 1 ; the D/A1 will continuously repeat the data that is stored in the D/A1 FIFO. This is useful for waveform generation. The not cycled mode is the normal operation mode.

The Function 0x0406 (0x040E for D/A2) resets the D/A1 FIFO. This Function sets the update pointer of the D/A1 FIFO to the beginning of the data array in the FIFO.

The Function 0x0407 (0x040 for D/A2) clears the D/A1 FIFO. This Function sets the update and write pointer of the D/A1 FIFO to the beginning of. This means that the FIFO is ready to fill with new data.

The following tables list the key digital codes and corresponding output voltages for the D/A converters.

Bipolar D/A Bit Weight	Ideal Output Voltage (millivolts)	
	-5 to +5 Volts	-10 to +10 Volts
2047	+4997.56	+9995.12
1024	+2500.00	+5000.00
512	+1250.00	+2500.00
256	+625.00	+1250.00
128	+312.50	+625.00
64	+156.25	+312.50
32	+78.13	+156.25
16	+39.06	+78.13
8	+19.53	+39.06
4	+9.77	+19.53
2	+4.88	+9.77
1	+2.44	+4.88
0	0.00	0.00
-1	-2.44	-4.88
-2	-4.88	-9.77
-4	-9.77	-19.53
-8	-19.53	-39.06
-16	-39.06	-78.13
-32	-78.13	-156.25
-64	-156.25	-312.50
-128	-312.50	-625.00
-256	-625.00	-1250.00
-512	-1250.00	-2500.00
-1024	-2500.00	-5000.00
-2048	-5000.00	-10000.00

Unipolar D/A Bit Weight	Ideal Output Voltage (millivolts)	
	0 to +5 Volts	0 to +10 Volts
4095	+4998.78	+9997.56
2048	+2500.00	+5000.00
1024	+1250.00	+2500.00
512	+625.00	+1250.00
256	+312.50	+625.00
128	+156.25	+312.50
64	+78.13	+156.25
32	+39.06	+78.13
16	+19.53	+39.06
8	+9.77	+19.53
4	+4.88	+9.77
2	+2.44	+4.88
1	+1.22	+2.44
0	0.00	0.00

6.1. 1024 Sample Buffer

Each D/A channel have a 1 k or 8 k sample buffers for storing data to be sent to the D/A converter (D/A FIFO). This means that you can fill the buffer with data and set up the D/A to output this data automatically. This is very useful for outputting high speed data or generating waveforms with precise timing requirements. By setting the cycled mode, you can fill the buffer with one cycle of a wave, start the D/A update clock and the buffer will continue to repeat until the clock is stopped. Combining this feature with the variety of update sources, you can build a flexible waveform generator.

If you are trying to generate a non-repetitive waveform, you can combine the sample buffer capability with the D/A Update Counter. To utilize this feature of the PCI4520/DM7520/SDM7540/8540 properly, you should load the buffer with data, program the D/A Update Counter for half the buffer size (512 samples), and use the Update Counter to generate an interrupt. When an interrupt is received, you should reload the buffer with 512 new samples. By continuing this cycle, you can generate a non-repetitive waveform at high speeds.

Status of the FIFO buffers can be monitored at LAS0 +010 h . Any samples that are written to the FIFO after it is full will be ignored. You can write up to 1024 samples to the buffer before it is full. Each update pulse (either software or from one of the clocks) will remove a sample from the buffer and send it out the D/A. Each update - read after the FIFO buffer is empty will be ignored, and the output of the D/A remains in the last updated state.

At power-up or reset, the D/A outputs are set to 0 volts. Before loading data into the sample buffer it is best to clear the buffer by Function 0x0407 or 0x040F. When you issue the "Clear D/A FIFO" command, all data in the buffer is erased. If you issue the "Reset DAC FIFO" command, the data in the buffer is not erased, however the address pointer is set back to the beginning of the buffer: This is useful when you are generating waveforms and stop the updating in the middle of a cycle.

6.2. D/A Cycled or Not Cycled Mode

The cycle bit is used to make the buffer data repeat. Under normal operation, without the cycled mode set, data is written into the buffer and the update clock reads data out of the buffer. When the buffer is empty, the output of the D/A remains unchanged. If you set the cycle bit high, the data in the buffer will repeat. If you load a data set into the buffer, when the update clock reaches the end of the data it will automatically wrap around to the beginning and start over. This is useful for generating waveforms.

6.3. D/A Update Counters

The D/A1 and D/A2 16 bit wide Update Counters, are useful when using clocks to output data to the D/As. The counters can be accessed at LAS $0+04 \mathrm{Ch}$, ill LAS0 +050 h addresses. These counters will count update pulses sent to the D/A's and can be polled to read the current count or can be used to generate interrupts when the count reaches 0 . These counters can be loaded to any starting value and count down. When the count reaches 0 it will automatically be reloaded with the original starting value.

6.4. D/A Data Markers

The D/A Data Markers are used to send out digital pulses synchronized to the D/A analog output. Since each D/A FIFO buffer is 16 bits wide and the D/A only uses 12 bits, there are bits left for Data Markers. Two of these bit locations can be filled with data and this data is sent out on the appropriate pins synchronized to the D/A analog output. This is useful for sending out a trigger pulse each time a waveform crosses zero or to send out pulses to trigger A/D conversions at the proper time in the D/A waveform. Each D/A channel have 2 Data Marker bits. The DM0 outputs can be accessed at the external I/O connector

7. Data transfer using DMA

There are three DMA modes. Those modes are single, block, and demand. Single mode transfers 1 data value per DMA request. Block mode transfers the amount of data values contained in the transfer count register at the initiation of one DMA request. Demand mode continually transfers data values until DMA request is deasserted.

The PCI9080/9056, the PCI controller chip of PCI4520/DM7520/SDM7540/8540 supports two independent DMA channels capable of transferring data from the Local Bus to the PCI Bus or from the PCI Bus to the Local Bus. Each channel consists of a DMA controller and a programmable FIFO. Both channels support Chaining and Non-chaining transfers, Demand mode DMA (can also work in non-demand mode), and End of Transfer (EOT) pins. Master mode must be enabled in the PCI Command register. We use the Demand mode DMA and do not use the EOT pins on the PCI4520/DM7520/SDM7540/8540 Board.

The DMA transfer on the PCI4520/DM7520/SDM7540/8540 can be used for reading or writing the LAS1 address area which contains the input and output FIFOs. Using the onboard DMA controllers we can transfer our data in burst mode, without CPU intervention. The Data transfer may be single cycle - NonChaining Mode or multiply cycle - Chaining mode.

The PCI4520/DM7520/SDM7540/8540 uses the demand mode DMA. This means that the DMA transfer is started by a programmable hardware event. (See 7.3.1.)

7.1 Non-Chaining Mode DMA

The host processor sets the Local Address (LAS1 FIFO address), PCI Address, transfer count and transfer direction. The host processor then sets a control bit to initiate the transfer or in Demand Mode a DMA request event can initiate the transfer. The PCI9080/9056 arbitrates the PCI and Local Buses and transfer data. Once the transfer is complete, the PCI9080/9056 sets the Channel Done bit to a value of 1 and generates an interrupt to the PCI Host (programmable). DMA Done bit in the internal DMA register can be pooled to indicate the status of DMA transfer. DMA registers are accessible from the PCI Bus and Local Bus.

The Local processor or PCI requires DMA. The PCI9080/9056 is Master on both the PCI and Local Buses. Direct Slave or Direct Master pre-empts DMA. The PCI9080/9056 releases the PCI Bus if one of the following occurs: -

- FIFO (of PCI9080/9056) is full
- Terminal count is reached
- PCI Latency Timer (PCILTR[7:0]) expires—normally programmed by the Host PCI BIOS—and PCI GNT\# de-asserts
- PCI Host asserts STOP
- Direct Master request pending

The PCI9080/9056 releases the Local Bus if one of the following occurs

- FIFO (of PCI9080/9056) is empty
- Terminal count is reached
- Local Bus Latency Timer (MARBR[7:0]) expires
- BREQ\# input is asserted
- Direct Slave request is pending

7.2 Chaining Mode DMA

In Chaining mode DMA, the Host Processor sets up descriptor blocks in local or host memory that are composed of a PCI Address, Local Address, transfer count, transfer direction, and address of the next descriptor block (refer to Figure 3-18). Host then sets up the address of the initial descriptor block in the Descriptor Pointer register of the PCI9080/9056 and initiates the transfer by setting a control bit. The PCI9080/9056 loads the first descriptor block and initiates the Data transfer. The PCI9080/9056 continues to load descriptor blocks and transfer data until it detects the End of Chain bit is set in the Next Descriptor Pointer register. The PCI9080/9056 can be programmed to interrupt the Local processor by setting the

Interrupt after Terminal Count bit or PCI Host upon completion of each block transfer and after all block transfers are complete (done). If chaining descriptors are located in Local memory, the DMA controller can be programmed to clear the transfer size at the completion of each DMA (DMAMODE0[16] and DMAMODE1[16]).
Notes: In Chaining mode DMA, the descriptor includes PCI Address, Local Address, Transfer Size and the Next Descriptor Pointer (DMAPADR0-DMADPR0). The Descriptor Pointer register contains the End of Chain bit, Direction of Transfer, Next Descriptor Address, and Next Descriptor Location. The DMA descriptor can be on Local or PCI memory, or both (first descriptor on Local memory, and second descriptor on PCI memory).

7.3 DMA Data Transfers

The PCI9080/9056 DMA controller can be programmed to transfer data from the Local Bus side to the PCI Bus side or from the PCI Bus side to the Local Bus side.

7.3.1 Demand Mode DMA

The Demand Mode DMA is used on the PCI4520/DM7520/SDM7540/8540 board. This means that a programmable hardware event generate DREQ0 or DREQ1 signal for the DMA controller to start the DMA transfer. Before this process the DMA registers must be initialized by software.

You can select from the following DMA request sources by writing the LAS0+101h and LAS0+102h the addresses:

```
0x0 = A/D Sample Counter ©
0x1 = D/A1 Sample Counter
0x2 = D/A2 Sample Counter
0x3 = User TC 1
```

The Counter values must be integer*2 because the Demand mode DMA transfers long words.

7.3.2. DMA Priority

DMA Channel 0 priority, DMA Channel 1 priority, or rotating priority can be specified in the DMA Arbitration register.

7.4 DMA Registers

The DMA operation is controlled via the DMA registers:

PCI (Offset from PCIBAR0 Base Address)	Local Access (Offset from Chip Select Address)	To ensure software compatibility with other versions of the PCI9080/9056 family and to ensure compatibility with future enhancements, write 0 to all unused bits.		PCI/ Local Writable	Serial EEPROM Writable
80h	100h	DMA Ch 0 Mode		Y	N
84h	104h	DMA Ch 0 PCI Address		Y	N
88h	108h	DMA Ch 0 Local Address		Y	N
8Ch	10Ch	DMA Ch 0 Transfer Byte Count		Y	N
90h	110h	DMA Ch 0 Descriptor Pointer		Y	N
94h	114h	DMA Ch 1 Mode		Y	N
98h	118h	DMA Ch 1 PCI Address		Y	N
9 Ch	11 Ch	DMA Ch 1 Local Address		Y	N
A0h	120h	DMA Ch 1 Transfer Byte Count		Y	N
A4h	124h	DMA Ch 1 Descriptor Pointer		Y	N
A8h	128h	ReservedDMA Channel1 Command/ Status Register	DMA Channel0 Command/ Status Register	Y	N
ACh	12Ch	Mode/Arbitration Register		Y	N
B0h	130h	DMA Threshold Register		Y	N

Table 7.1. DMA Registers

7.4.1. (DMAMODE0; PCI: 80h) DMA Channel 0 Mode Register

Bit	Description	Read	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540/ 8540
1:0	Local Bus Width. Value of 00 indicates bus width of 8 bits. Value of 01 indicates bus width of 16 bits. Value of 10 or 11 indicates bus width of 32 bits.	Yes	Yes	$\begin{aligned} & \hline \mathrm{S}=01 \\ & \mathrm{~J}=11 \\ & \mathrm{C}=11 \\ & \hline \end{aligned}$	01
5:2	Internal Wait States (data to data).	Yes	Yes	0	000
6	Ready Input Enable. Value of 1 enables Ready input. Value of 0 disables Ready input.	Yes	Yes	0	1
7	BTERM\# Input Enable. Value of 1 enables BTERM\# input. Value of 0 disables BTERM\# input. If set to 0 , the PCI9080/9056 bursts four Lword maximum at a time.	Yes	Yes	0	0
8	Local Burst Enable. Value of 1 enables bursting. Value of 0 disables local bursting. If burst is disabled, Local Bus performs continuous single cycles for Burst PCI Read/Write cycles.	Yes	Yes	0	1
9	Chaining. Value of 1 indicates Chaining mode is enabled. For Chaining mode, DMA source address, destination address and byte count are loaded from memory in PCIaddress Spaces. Value of 0 indicates Non-chaining mode is enabled.	Yes	Yes	0	1 or 0
10	Done Interrupt Enable. Value of 1 enables interrupt when done. Value of 0 disables interrupt when done. If DMA Clear Count mode is enabled, interrupt does not occur until byte count is cleared.	Yes	Yes	0	1 or 0
11	Local Addressing Mode. Value of 1 indicates Local Address LA[31:2] to be held constant. Value of 0 indicates Local Address is incremented.	Yes	Yes		1
12	Demand Mode. Value of 1 causes DMA controller to operate in Demand mode. In Demand mode, DMA controller transfers data when its DREQ[1:0]\# input is asserted. Asserts DACK[1:0]\# to indicate current Local Bus transfer is in response to DREQ[1:0]\# input. DMA controller transfers Lwords (32 bits) of data. May result in multiple transfers for 8 - or 16 -bit bus	Yes	Yes	0	1
13	Write and Invalidate Mode for DMA Transfers. When set to 1 , the PCI9080/9056 performs Write and Invalidate cycles to PCI Bus. The PCI9080/9056 supports Write and Invalidate sizes of 8 or 16 Lwords. Size specified in PCI Cache Line Size Register. If size other than 8 or 16 is specified, the PCI9080/9056 performs Write transfers rather than Write and Invalidate transfers. Transfers must start and end at Cache Line boundaries.	Yes	Yes	0	0
14	DMA EOT (End of Transfer) Enable. Value of 1 enables EOT[1:0]\# input pin. Value of 0 disables EOT[1:0]\# input pin.	Yes	Yes	0	0
15	DMA Stop Data Transfer Mode. Value of 0 sends BLAST to terminate DMA transfer. Value of 1 indicates EOT asserted or DREQ[1:0]\# de-asserted during Demand mode DMA terminates a DMA transfer. (Refer to Section 3.7.6.1, "End of Transfer (EOT0\# or EOT1\#) Input.")	Yes	Yes	0	0
16	DMA Clear Count Mode. When set to 1 , if it is in Local memory, byte count in each chaining descriptor is cleared when corresponding DMA transfer completes. Note: If the chaining descriptor is in PCI memory, the count is not cleared. (This is the PCI4520/DM7520/SDM7540/8540 situation)	Yes	Yes	0	0
17	DMA Channel 0 Interrupt Select. Value of 1 routes DMA Channel 0 interrupt to PCI interrupt. Value of 0 routes DMA Channel 0 interrupt to Local Bus interrupt.	Yes	Yes	0	1
31:18	Reserved.	Yes	No	0	$0 . .0$

7.4.2. (DMAPADR0; PCI:84h) DMA Channel 0 PCI Address Register

Bit	Description	Rea d	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540/ 8540
$31: 0$	PCI Address Register. This register indicates from where, in PCI memory space, the DMA transfers (reads or writes) start.	Yes	Yes	0	PCI Data Buffer Address

7.4.3. (DMALADR0; PCI:88h) DMA Channel 0 Local Address Register

Bit	Description	Rea d	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540/ $\mathbf{8 5 4 0}$
$31: 0$	Local Address Register. This register indicates from where, in Local memory space, the DMA transfers (reads or writes) start.	Yes	Yes	0	LAS1 + offset

7.4.4. (DMASIZ0; PCI:8Ch) DMA Channel 0 Transfer Size (Bytes) Register

Bit	Description	Rea d	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540/ $\mathbf{8 5 4 0}$
$22: 0$	DMA Transfer Size (Bytes). Indicates number of bytes to transfer during DMA operation.	Yes	Yes	0	Byte number
$31: 23$	Reserved.	Yes	No	0	$\mathbf{0 . . 0}$

7.4.5. (DMADPR0; PCI:90h) DMA Channel 0 Descriptor Pointer Register

Bit	Description	Rea d	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540/ $\mathbf{8 5 4 0}$
0	Descriptor Location. Value of 1 indicates PCI Address space. Value of 0 indicates Local Address Space.	Yes	Yes	0	1 (No local memory)
1	End of Chain. Value of 1 indicates end of chain. Value of 0 indicates not end of chain descriptor. (Same as Non- chaining Mode.)	Yes	Yes	0	$\mathbf{0}$ or 1
2	Interrupt after Terminal Count. Value of 1 causes interrupt to be generated after terminal count for this descriptor is reached. Value of 0 disables interrupts from being generated.	Yes	Yes	0	$\mathbf{0}$ or 1
3	Direction of Transfer. Value of 1 indicates transfers from the Local Bus to PCI Bus. Value of 0 indicates transfers	Yes	Yes	0	$\mathbf{0}$ or 1

	from the PCI Bus to Local Bus.				
$31: 4$	Next Descriptor Address. Quad word aligned (bits [3:0] $=0000)$.	Yes	Yes	0	Address

7.4.6. (DMAMODE1; PCI:94h) DMA Channel 1 Mode Register

Bit	Description	Read	Write	After Reset	Value in PCI4520/7520 SDM7540/8540
1:0	Local Bus Width. Value of 00 indicates bus width of 8 bits. Value of 01 indicates bus width of 16 bits. Value of 10 or 11 indicates bus width of 32 bits.	Yes	Yes	$\begin{aligned} & \mathrm{S}=01 \\ & \mathrm{~J}=11 \\ & \mathrm{C}=11 \end{aligned}$	01
5:2	Internal Wait States (data to data).	Yes	Yes	0	000
6	Ready Input Enable. Value of 1 enables Ready input. Value of 0 disables Ready input.	Yes	Yes	0	1
7	BTERM\# Input Enable. Value of 1 enables BTERM\# input. Value of 0 disables BTERM\# input. If set to 0 , the PCI9080/9056 bursts four Lword maximum at a time.	Yes	Yes	0	0
8	Local Burst Enable. Value of 1 enables bursting. Value of 0 disables local bursting. If burst is disabled, Local Bus performs continuous single cycles for Burst PCI Read/Write cycles.	Yes	Yes	0	1
9	Chaining. Value of 1 indicates Chaining mode is enabled. For Chaining mode, DMA source address, destination address and byte count are loaded from memory in PCI address Spaces. Value of 0 indicates Non-chaining mode is enabled.	Yes	Yes	0	1 or 0
10	Done Interrupt Enable. Value of 1 enables interrupt when done. Value of 0 disables interrupt when done. If DMA Clear Count mode is enabled, interrupt does not occur until byte count is cleared.	Yes	Yes	0	1 or 0
11	Local Addressing Mode. Value of 1 indicates Local Address LA[31:2] to be held constant. Value of 0 indicates Local Address is incremented.	Yes	Yes		1
12	Demand Mode. Value of 1 causes DMA controller to operate in Demand mode. In Demand mode, DMA controller transfers data when its DREQ[1:0]\# input is asserted. Asserts DACK[1:0]\# to indicate current Local Bus transfer is in response to DREQ[1:0]\# input. DMA controller transfers Lwords (32 bits) of data. May result in multiple transfers for 8 - or 16 -bit bus	Yes	Yes	0	1
13	Write and Invalidate Mode for DMA Transfers. When set to 1 , the PCI9080/9056 performs Write and Invalidate cycles to PCI Bus. The PCI9080/9056 supports Write and Invalidate sizes of 8 or 16 Lwords. Size specified in PCI Cache Line Size Register. If size other than 8 or 16 is specified, the PCI9080/9056 performs Write transfers rather than Write and Invalidate transfers. Transfers must start and end at Cache Line boundaries.	Yes	Yes	0	0
14	DMA EOT (End of Transfer) Enable. Value of 1 enables EOT[1:0]\# input pin. Value of 0 disables EOT[1:0]\# input pin. (EOT0\# or EOT1\#) Input.")	Yes	Yes	0	0
15	DMA Stop Data Transfer Mode. Value of 0 sends BLAST to terminate DMA transfer. Value of 1 indicates EOT asserted or DREQ[1:0]\# de-asserted during Demand mode DMA terminates a DMA transfer. (Refer to Section 3.7.6.1, "End of Transfer (EOT0\# or EOT1\#) Input.")	Yes	Yes	0	0
16	DMA Clear Count Mode. When set to 1 , if it is in Local memory, byte count in each chaining descriptor is cleared when corresponding DMA transfer completes. Note: If the chaining descriptor is in PCI memory, the count is not cleared. (This is the PCI4520/DM7520/SDM7540/8540 situation)	Yes	Yes	0	0
17	DMA Channel 0 Interrupt Select. Value of 1 routes DMA Channel 0 interrupt to PCI interrupt. Value of 0 routes DMA Channel 0 interrupt to Local Bus interrupt.	Yes	Yes	0	1
$\begin{aligned} & \hline 31: \\ & 18 \\ & \hline \end{aligned}$	Reserved.	Yes	No	0	0.. 0

7.4.7. (DMAPADR1; PCI:98h) DMA Channel 1 PCI Address Register

Bit	Description	Read	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540/8 $\mathbf{5 4 0}$
$31: 0$	PCI Address Register. Indicates from where, in PCI memory space, the DMA transfers (reads or writes) start.	Yes	Yes	0	PCI Data Buffer Address

7.4.8. (DMALADR1; PCI:9Ch) DMA Channel 1 Local Address Register

Bit	Description	Read	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540/8 $\mathbf{5 4 0}$
$31: 0$	Local Address Register. Indicates from where, in Local memory space, the DMA transfers (reads or writes) start.	Yes	Yes	0	$\mathbf{4 0 0 0 0 0 0 0 . .}$ $\mathbf{4 0 0 0 0 0 0}$

7.4.9. (DMASIZ1; PCI:A0h) DMA Channel 1 Transfer Size (Bytes) Register

Bit	Description	Read	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540/8 $\mathbf{5 4 0}$
22:0	DMA Transfer Size (Bytes). Indicates number of bytes to transfer during DMA operation.	Yes	Yes	0	Byte number
$31: 23$	Reserved.	Yes	No	0	$\mathbf{0 . . 0}$

7.4.10. (DMADPR1; PCI:A4h) DMA Channel 0 Descriptor Pointer Register

Bit	Description	Read	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540/8 $\mathbf{5 4 0}$
0	Descriptor Location. Value of 1 indicates PCI Address space. Value of 0 indicates Local Address Space.	Yes	Yes	0	$\mathbf{1}$ (No local memory)
1	End of Chain. Value of 1 indicates end of chain. Value of 0 indicates not end of chain descriptor. (Same as Non-chaining Mode.)	Yes	Yes	0	$\mathbf{0}$ or 1
2	Interrupt after Terminal Count. Value of 1 causes interrupt to be generated after terminal count for this descriptor is reached. Value of 0 disables interrupts from being generated.	Yes	Yes	0	$\mathbf{0}$ or 1
3	Direction of Transfer. Value of 1 indicates transfers from the Local Bus to PCI Bus. A value of 0 indicates transfers from the PCI Bus to Local Bus.	Yes	Yes	0	$\mathbf{0}$ or 1
$31: 4$	Next Descriptor Address. Quad word aligned (bits [3:0] $=0000)$.	Yes	Yes	0	Address

7.4.11. (DMACSR0; PCI:A8h) DMA Channel 0 Command/Status Register

Bit	Description	Read	Write	Value after Reset	Value in PCI4520 DM7520
0	Channel 0 Enable. Value of 1 enables channel to transfer data. Value of 0 disables channel from starting DMA transfer and if in process of transferring data suspend transfer (pause).	Yes	Yes	0	$\mathbf{0}$ or 1
1	Channel 0 Start. Value of 1 causes channel to start transferring data if channel is enabled.	Yes	Yes/Set	0	$\mathbf{0}$ or 1
2	Channel 0 Abort. Value of 1 causes channel to abort current transfer. Channel Enable bit must be cleared. Channel Complete bit is set when abort is complete.	Yes	Yes/Set	0	$\mathbf{0}$ or 1
3	Clear Interrupt. Writing 1 to this bit clears Channel 0 interrupts.	Yes	Yes/Clr	0	$\mathbf{0}$ or 1
4	Channel 0 Done. Value of 1 indicates channel's transfer is complete. Value of 0 indicates channel's transfer is not complete.	Yes	No	1	-
$7: 5$	Reserved.	Yes	No	0	-

7.4.12. (DMACSR1; PCI:A9h) DMA Channel 1 Command/Status Register

Bit	Description	Read	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540/8 $\mathbf{5 4 0}$
0	Channel 1 Enable. Value of 1 enables channel to transfer data. Value of 0 disables channel from starting DMA transfer and if in process of transferring data suspend transfer (Pause).	Yes	Yes	0	$\mathbf{0}$ or 1
1	Channel 1 Start. Value of 1 causes channel to start transferring data if channel is enabled.	Yes	Yes/Set	0	$\mathbf{0}$ or 1
2	Channel 1 Abort. Value of 1 causes channel to abort current transfer. Channel Enable bit must be cleared. Channel Complete bit is set when abort is complete.	Yes	Yes/Set	0	$\mathbf{0}$ or 1
3	Clear Interrupt. Writing 1 to this bit clears Channel 0 interrupts.	Yes	Yes/Clr	0	$\mathbf{0}$ or 1
4	Channel 1 Done. Value of 1 indicates channel's transfer is complete. Value of 0 indicates channel's transfer is not complete.	Yes	No	1	-
$7: 5$	Reserved.	Yes	No	0	-

7.4.13. (DMAARB; PCI:ACh) DMA Arbitration Register

Same as Mode/Arbitration register (MARBR) at address PCI:08h.

7.4.14. (DMATHR; PCI:B0h) DMA Threshold Register

Bit	Description	Read	Write	Value after Reset
3:0	0 DMA Channel 0 PCI-to-Local Almost Full (C0PLAF). Number of full entries (divided by two, minus one) in the FIFO before requesting Local Bus for writes. (C0PLAF +1) + (C0PLAE +1) should be $£$ FIFO Depth of 32 .	Yes	Yes	0
7:4	DMA Channel 0 Local-to-PCI Almost Empty (C0LPAE). Number of empty entries (divided by two, minus one) in the FIFO before requesting Local Bus for reads. (C0LPAF +1$)+($ C0LPAE +1$)$ should be $£$ FIFO depth of 32 .	Yes	Yes	0
11:8	DMA Channel 0 Local-to-PCI Almost Full (C0LPAF). Number of full entries (divided by two, minus one) in the FIFO before requesting PCI Bus for writes.	Yes	Yes	0
15:12	DMA Channel 0 PCI-to-Local Almost Empty (COPLAE). Number of empty entries (divided by two, minus one) in the FIFO before requesting PCI Bus for reads.	Yes	Yes	0
19:16	DMA Channel 1 PCI-to-Local Almost Full (C1PLAF). Number of full entries(minus one) in the FIFO before requesting Local Bus for writes. (C1PLAF+1) + (C1PLAE +1) should be $£$ FIFO depth of 16.	Yes	Yes	0
23:20	DMA Channel 1 Local-to-PCI Almost Empty (C1LPAE). Number of empty entries (minus one) in the FIFO before requesting Local Bus for reads. (C1PLAF) + (C1PLAE) should be $£$ FIFO depth of 16 .	Yes	Yes	0
27:24	DMA Channel 1 Local-to-PCI Almost Full (C1LPAF). Number of full entries (minus one) in the FIFO before requesting PCI Bus for writes.	Yes	Yes	0
31:28	DMA Channel 1 PCI-to-Local Almost Empty (C1PLAE). Number of empty entries (minus one) in the FIFO before requesting PCI Bus for reads.	Yes	Yes	0

Note: If the number of entries needed is x , then the value is one less than half the number of entries (DMA Channel 0 only).

8. Interrupts

This chapter explains the possible interrupt sources and the priority Interrupt Controller of the board.

The PCI4520 uses the INTA\# PCI interrupt line. The DM7520/SDM7540/8540 can use either INTA\#, INTB\#, INTC\#, or INTD\#, depending on the position of the rotary switch (SW1). The PCI INT\# line is assigned to an IRQ channel by the CPU's BIOS at boot time. Since the board is a PCI device, it may be assigned to the same IRQ as other PCI devices. IRQ sharing is a normal mode of operation for PCI devices.

Because of the several interrupt sources on the board a Priority Interrupt Controller was built on the board. This controller assures even usage all of the interrupt sources on the board.

8.1. The Overall Interrupt Structure of PCI4520/DM7520/SDM7540/8540

8.1.1. The Interrupt Sources of PCI4520/DM7520/SDM7540/8540

The PCI4520/DM7520/SDM7540/8540 PCI interrupt can be generated one of the following:

- The On-board Priority Interrupt Controller
- DMA Ch 0/Ch 1 Done
- DMA Ch 0/Ch 1 Terminal Count reached

INTA\#, or individual sources of an interrupt, can be enabled or disabled with the PCI9080/9056 Interrupt Control/Status register (INTCSR). This register also provides interrupt status for each interrupt source. The PCI9080/9056 PCI Bus interrupt is level output. Disabling an Interrupt Enable bit or clearing the cause(s) of the interrupt can clear an interrupt.

The On Board Priority Interrupt Controller

The On-board Priority Interrupt controller can assert the Local Bus input pin. Asserting Local Bus input pin LINTi\# can generate a PCI Bus interrupt. PCI Host processor can read the PCI9080/9056 Interrupt Control/Status register to determine that an interrupt is pending due to the LINTi\# pin being asserted. The interrupt remains asserted as long as the LINTi\# pin is asserted and the Local interrupt input is enabled. Clearing the Interrupt Request Register (LAS0+034h) can be taken by the PCI Host processor to cause the Local Bus to release LINTi\#.

DMA Channel 0/1 Interrupts

A DMA channel can generate a PCI interrupt when done (transfer complete) or after a transfer is complete for a descriptor in Chaining mode. A bit in the DMA mode register determines whether to generate a PCI or Local interrupt. (The Local interrupt does not make sense because there is no Local Processor) The PCI processor can then read the PCI9080/9056 Interrupt Control/Status register (INTCSR) to determine whether a DMA channel interrupt is pending. A Done Status Bit in the Control/Status register can be used to determine whether the interrupt is

- a done interrupt
- the result of a transfer for a descriptor in a chain that is not yet complete

The mode register of a channel enables a Done Interrupt. In Chaining mode, a bit in the Next Descriptor Pointer register of the channel specifies whether to generate an interrupt at the end of the transfer for the current descriptor. A DMA channel interrupt is cleared by writing a 1 to the Clear Interrupt bit in the DMA Command/Status register (DMACSR0[3] and DMACSR1[3]).

8.1.2. The Interrupt Registers of PCI4520/DM7520/SDM7540/8540

The PCI4520/DM7520/SDM7540/8540 has two Interrupt register groups. The first is inside the PCI9080/9056 Interface chip the other is inside the Control Logic of the board.

The PCI9080/9056 Interrupt Control/Status Register is at the PCI:68h address: INTCSR:
(INTCSR; PCI:68h) Interrupt Control/Status Register:

Bit	Description	Read	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540/ $\mathbf{8 5 4 0}$
0	Enable Local Bus LSERR\#. Value of 1 enables the PCI9080/9056 to assert LSERR\# interrupt output when PCI Bus Target Abort or Master Abort Status bit is set in PCI Status Configuration register.	Yes	Yes	0	0
1	Enable Local Bus LSERR\# when PCI parity error occurs during a PCI9080/9056 Master Transfer or a	Yes	Yes	0	0
PCI9080/9056 Slave access or an Outbound Free List FIFO Overflow Init.					
2	Generate PCI Bus SERR\# When this bit is set to 0, writing 1 generates a PCI bus SERR\#.	Yes	Yes	0	0
3	Mailbox Interrupt Enable. Value of 1 enables a Local interrupt to be generated when PCI Bus writes to Mailbox registers 0 through 3. To clear a Local interrupt, the Local Master must read the Mailbox. Used in conjunction with Local interrupt enable.	Yes	Yes	0	0
$7: 4$	Reserved.			0	
8	PCI Interrupt Enable. Value of 1 enables PCI interrupts.				

Bit	Description	Read	Write	Value after Reset	Value in PCI4520 DM7520 SDM7540 /8540
17	Local Doorbell Interrupt Enable. Value of 1 enables doorbell interrupts. Used in conjunction with Local interrupt enable. Clearing local doorbell interrupt bits that caused interrupt also clears interrupt.	Yes	Yes	0	0
18	Local DMA Channel 0 Interrupt Enable. Value of 1 enables DMA Channel 0 interrupts. Used in conjunction with Local interrupt enable. Clearing DMA status bits also clears interrupt.	Yes	Yes	0	0 or 1
19	Local DMA Channel 1 Interrupt Enable. Value of 1 enables DMA Channel 1 interrupts. Used in conjunction with Local interrupt enable. Clearing DMA status bits also clears interrupt.	Yes	Yes	0	0
20	Value of 1 indicates local doorbell interrupt is active.	Yes	No	0	0
21	Value of 1 indicates DMA Ch 0 interrupt is active.	Yes	No	0	0
22	Value of 1 indicates DMA Ch 1 interrupt is active.	Yes	No	0	0
23	Value of 1 indicates BIST interrupt is active. Writing 1 to bit 6 of PCI Configuration BIST Register generates BIST (Built-In Self-Test) interrupt. Clearing bit 6 clears interrupt. For description of self-test, refer to PCI BISTR.	Yes	No	0	0
24	Value of 0 indicates Direct Master was Bus Master during a Master or Target abort. (Not valid until abort occurs.)	Yes	No	1	1
25	Value of 0 indicates DMA CH 0 was Bus Master during a Master or Target abort. (Not valid until abort occurs.)	Yes	No	1	1
26	Value of 0 indicates DMA CH 1 was Bus Master during a Master or Target abort. (Not valid until abort occurs.)	Yes	No	1	1
27	Value of 0 indicates Target Abort was generated by the PCI9080/9056 after 256 consecutive Master retries to Target. (Not valid until abort occurs.)	Yes	No	1	1
28	Value of 1 indicates PCI wrote data to MailBox \#0. Enabled only if MBOXINTENB is enabled (bit 3 high).	Yes	No	0	N/A
29	Value of 1 indicates PCI wrote data to MailBox \#1. Enabled only if MBOXINTENB is enabled (bit 3 high).	Yes	No	0	N/A
30	Value of 1 indicates PCI wrote data to MailBox \#2. Enabled only if MBOXINTENB is enabled (bit 3 high).	Yes	No	0	N/A
31	Value of 1 indicates PCI wrote data to MailBox \#3. Enabled only if MBOXINTENB is enabled (bit 3 high).	Yes	No	0	N/A

The other group of interrupt registers are the on-board, priority interrupt, controller registers of he board (LAS0 + 030h.. 038h).

8.2. The Operation of On-board Priority Interrupt Controller

After power-up all of the interrupt sources are disabled on the board. In this state place your Interrupt Service Routine which will be used in the case of an interrupt generated by the board.

The initialization process of the controller is:

- Set all bits to 1 in the Interrupt Clear Mask Register.
- Read a dummy data from Clear Interrupt set by Clear Mask address. These two steps means that all Interrupt requests are cleared
- Write Interrupt mask register. If an interrupt source must be used, that position in the register must be set to 1 .

After this initialization process the Interrupt Controller receives the interrupt requests, and according to their priority order transmits them to the PC. One time one request.

In the Interrupt service routine you must identify the current interrupt source reading by (INTCSR; PCI:68h) Interrupt Control/Status Register of PCI9080/9056, and then the Interrupt Status Register of onboard Priority Interrupt Controller. The INTCSR description can be found in the Chapter 8.1.2. In the onboard priority register there is a position where the bit is high, signaling the active interrupt source from the priority interrupt sources. All of the other bits are zero. Identifying the source, it can be serviced. After servicing, the request must be cleared by accessing the Interrupt clear mask and the Clear Interrupt set by Clear Mask registers.

In the normal operation, the next interrupt request comes later than clearing of the previous. If this is override, it can be detected by the Interrupt Overrun register. If the interrupts serviced in time all bits are zeros in the overrun register. If a new interrupt request comes before the previous has been serviced and the request is cleared, the appropriate overrun bit goes into high signaling the faulty - too slow interrupt service - operation.

8.3. Advanced Digital Interrupts

The bit programmable digital I/O circuitry supports two Advanced Digital Interrupt modes, event mode or match mode. These modes are used to monitor digital input lines (P0..7) for state changes. The mode is selected at $\mathrm{LAS} 0+7 \mathrm{Ch}, \mathrm{B} 3$ and enabled at $\mathrm{LAS} 0+7 \mathrm{Ch}, \mathrm{B} 4$.

8.3.1. Event Mode

When enabled, this mode samples the Port 0 input lines at a specified clock rate (using the 8 MHz system clock or a programmable clock in User TC Counter 1), looking for a change in state in any one of the eight bits. When a change of state occurs, an interrupt is generated and the input pattern is latched into the Compare Register. You can read the contents of this register at LAS0+78h (LAS0+7C bits 1 and 0 set to 11) to see which bit caused the interrupt to occur. Bits can be masked and their state changes ignored by programming the Mask Register with the mask at LAS0+78h (LAS0+7C bits 1 and 0 set to 10).

8.3.2. Match Mode

When enabled, this mode samples the Port 0 input lines at a specified clock rate (using the 8 MHz system clock or a programmable clock in User TC Counter 1) and compares all input states to the value programmed in the Compare Register at LAS0+78h (LAS0+7C bits 1 and 0 set to 11). When the states of all of the lines match the value in the Compare Register, an interrupt is generated. Bits can be masked and their states ignored by programming the Mask Register with the mask at LAS0+78h (LAS0 +7 C bits 1 and 0 set to 10).

8.3.3. Sampling Digital Lines for Change of State

In the Advanced Digital Interrupt modes, the digital lines are sampled at a rate set by the 8 MHz system clock or the clock programmed in User TC Counter 1. With each clock pulse, the digital circuitry looks at the state of the next Port 0 bits. To provide noise rejection and prevent erroneous interrupt generation because of noise spikes on the digital lines, a change in the state of any bit must be seen for two edges of a clock pulse to be recognized by the circuit.

9. Timer/Counters

The Timer/Counter section contains internal TCs in the Control EPLD and an 8254 programmable interval timers for User Timer Counter.

9.1. The internal Timer Timer/Counters

The internal Timer Counters works similar to the 8254 in rate mode. The PCI4520/DM7520/SDM7540/8540 has 8 internal timer counter:

1. Pacer Clock - 24bit - Clock Signal is $8-(8 / 20$ DM7520/SDM7540/8540) MHz
2. Burst Clock - 10bit (16bit DM7520/SDM7540/8540) - Clock Signal is 8 MHz
3. A/D Sample counter - 10 bit (16bit DM7520/SDM7540/8540) - Clock signal can be programmed
4. D/A1 Update counter - 10 bit (16bit DM7520/SDM7540/8540) - Clock signal is D/A1 update
5. D/A2 Update counter - 10 bit (16bit DM7520/SDM7540/8540) - Clock signal is D/A2 update
6. Delay Counter - 16 bit - Clock signal can be programmed
7. About Counter - 16 bit - Clock signal can be programmed
8. D/A Clock - 16 (24bit-DM7520/SDM7540/8540) bit - Clock Signal is 8 MHz

9.2. User Timer Timer/Counters

The 8254 is the User TC. All three counters on this chip are available for user functions. For details on the programming modes of the 8254, see the data sheet in Appendix.

Each timer/counter has two inputs, CLK in and GATE in, and one output, timer/counter OUT. They can be programmed as binary or BCD down counters by writing the appropriate data to the command word, as described in the I/O map discussion in Chapter 4. See Figure 9.2.1. The sources of the user TC clocks and gates can be programmed by User Timer address area is the LAS0+1A0.. 1B4. It is important, that the registers of the Timer Counter can be accessed by byte wide instructions. The 16 bit wide word must be created from the bytes.

Figure 9.2.1.
The timers can be programmed to operate in one of six modes, depending on your application. The following paragraphs briefly describe each mode.
Mode 0, Event Counter (Interrupt on Terminal Count). This mode is typically used for event counting. While the timer/counter counts down, the output is low, and when the count is complete, it goes high. The output stays high until a new Mode 0 control word is written to the timer/counter.

Mode 1, Hardware-Retriggerable One-Shot. The output is initially high and goes low on the clock pulse following a trigger to begin the one-shot pulse. The output remains low until the count reaches 0 , and then goes high and remains high until the clock pulse after the next trigger.
Mode 2, Rate Generator. This mode functions like a divide-by-N counter and is typically used to generate a real-time clock interrupt. The output is initially high, and when the count decrements to 1 , the output goes low for one clock pulse. The output then goes high again, the timer/counter reloads the initial count, and the process is repeated. This sequence continues indefinitely.
Mode 3, Square Wave Mode. Similar to Mode 2 except for the duty cycle output, this mode is typically used for baud rate generation. The output is initially high, and when the count decrements to one-half its initial count, the output goes low, for the remainder of the count. The timer/counter reloads and the output goes high again. This process repeats indefinitely.
Mode 4, Software-Triggered Strobe. The output is initially high. When the initial count expires, the output goes low for one clock pulse and then goes high again. Counting is "triggered" by writing the initial count.
Mode 5, Hardware Triggered Strobe (Retriggerable). The output is initially high. Counting is triggered by the rising edge of the gate input. When the initial count has expired, the output goes low for one clock pulse and then goes high again.

10. Digital I/O

The PCI4520/DM7520/SDM7540/8540 has several digital lines to receive and transmit digital data from, or to the external digital world. This chapters describes only the $31 . .46$ pins of External I/O connector. These 16 Digital Input/Output lines are multifunctions and assures a flexible connection with the digital world.

The connections of odd numbered pins are shown in the Figure 10.1. These lines are monitored by the high-speed digital input circuitry, and the least significant three bits of the A/D FIFO as data markers, therefore these lines can be read or driven by the Port 0 of Digital I/O Chip.

ure 10.1.

The connections of even numbered pins are shown in the Figure 10.2. These lines can be driven by the digital part of the CGT, therefore these lines can be read or driven by the Port 1 of Digital I/O Chip.

Figure 10.2.

10.1. The Digital I/O Chip

The PCI4520/DM7520/SDM7540/8540 has 16 buffered TTL/CMOS digital I/O lines available for digital control applications. These lines are grouped in two 8 -bit ports. The sixteen bits in Port 0 can be independently programmed as input or output. Port 1 can be programmed as 8 -bit input or output ports. These lines are grouped in digital I/O chip with sixteen lines. The Digital I/O chip is addressed at LAS0 + 070h.. LAS0 + 07Fh.

All digital inputs are pulled up to +5 V by 10 kOhm resistors. All digital outputs are terminated by series 10 Ohm resistors.

10.1.1 Port 0, Bit Programmable Digital I/O

The eight Port 0 digital lines are individually set for input or output by writing to the Direction Register at LAS0 +078 h . The input lines are read and the output lines are written at LAS $0+070 \mathrm{~h}$.

10.1.2. Advanced Digital Interrupts: Mask and Compare Registers

The Port 0 bits support two Advanced Digital Interrupt modes. An interrupt can be generated when the data read at the port matches the value loaded into the Compare Register. This is called a match interrupt. Or, an interrupt can be generated whenever any bit changes state. This is an event interrupt. For either interrupt, bits can be masked by setting the corresponding bit in the Mask Register high. In a digital interrupt mode, this masks out selected bits when monitoring the bit pattern for a match or event. In normal operation where the Advanced Digital Interrupt mode is not activated, the Mask Register can be used to preserve a bit's state, regardless of the digital data written to Port 0 .

When using event interrupts, you can determine which bit caused an event interrupt to occur by reading the contents latched into the Compare Register.

10.1.3. Port 1, Port Programmable Digital I/O

The direction of the eight bit Port 1 digital lines is programmed at LAS $0+07 \mathrm{Ch}$, bit 2 . These lines are configured as all inputs or all outputs, with their states read and written at LAS0 +074 h .

10.1.4. Resetting the Digital Circuitry

When a digital chip clear (LAS0 +07 Ch bits 1 and $0=00$ followed by a write to LAS0 +078 h), Software Reset of the board (Function 0x000F), all of the digital I/O lines are set up as inputs.

10.1.5. Strobing Data into Port 0

When not in an Advanced Digital Interrupt mode, external data can be strobed into Port 0 by connecting a trigger pulse through the External Pacer Clock pin at the External I/O Connector. This data can be read from the Compare Register at LAS0 +078 h .

10.2. High-Speed Digital Input

As you can see in the Figure 9.1, the Pin 31.. 45 digital pins of external I/O connector can be sampled by high -speed digital input circuitry. The sampling signal can be selected by the Function 0x0206. Samples are written automatically into the high-speed digital input FIFO. The status bits of FIFO can be monitored at the address LAS0+8h.

If you want to get an interrupt at a required number of samples in the FIFO, use User Timer Counter 1 as high speed digital input sample counter. Select the high-speed digital input sampling signal as clock of user TC1 by the Function 0x0702.

All digital inputs are pulled up to +5 V by 10 kOhm resistors.

10.3. Digital Input Data Markers

As you can see in the Figure 10.1, the digital pin 31, 33, 35 can be sampled nearly simultaneously with the analog input signal by the A/D FIFO. The delay time between the analog input sampling and the digital input sampling is app. 800 ns . If you want to sample the digital lines with the analog lines really simultaneously, use the high-speed digital input with A/D Conversion Signal as sampling signal of highspeed digital input.

All digital inputs are pulled up to +5 V by 10 kOhm resistors.

11. Calibration

This chapter tells you how to calibrate the PCI4520/DM7520 using the trim pots on the board. These trim pots calibrate the A/D converter gain and offset, and the D/A outputs.

This chapter tells you how to calibrate the A/D converter gain and offset, and the D/A output multiplier. The offset and full-scale performance of the board's A / D and D / A converters is factorycalibrated. Any time you suspect inaccurate readings, you can check the accuracy of your conversions using the procedure below, and make adjustments as necessary.

Calibration is done with the board installed in your system. You can access the trim pots (nonexistent on SDM7540/8540) at the top edge of the board. Power up the system and let the board circuitry stabilize for 15 minutes before you start calibrating.

11.1 SDM7540/8540 Calibration

The SDM7540/8540 is an auto-calibrating board that does not require any trim pot adjustments. Upon first time boot the board loads factory default values. After invoking the calibration command (see $0 x B 0$ register) the board recalibrates and stores these new calibration values into the EEPROM. Each time the user calibrates these old values are overwritten with the new values. The user can go back to default factory values by writing the appropriate command to the DSP Command register(see 0xB0 register). All analog paths (A/D, D/A1 and D/A2) will be calibrated. The user can perform calibration at will or based on the readings of an on-board temperature sensor. During calibration the D/A board outputs will be grounded and disconnected from the DACs. Upon auto-calibration completion the D/A FIFOs will be cleared and the D/A outputs will be in the bipolar 5 V range $(+/-5 \mathrm{~V})$, with the output of the DACs set to zero volts. The user does have the option to pass a value to the DAC and upon completion of calibration the DAC will be restored to that value. Chapter 11, which describes manual calibration can be ignored if using the SDM7540/8540 board.

11.2. Required Equipment (PCI4520/DM7520)

The following equipment is required for calibration:

- Precision Voltage Source: -10 to +10 volts
- Digital Voltmeter: 5-1/2 digits
- Small Screwdriver (for trim pot adjustment)

11.2. PCI4520/DM7520 A/D Calibration

Two procedures are used to calibrate the A / D converter for all input voltage ranges. The first procedure calibrates the converter for the bipolar ranges ($\pm 5, \pm 10$ volts), and the second procedure calibrates the unipolar range (0 to +10 volts). Table $12-1$ shows the ideal input voltage for each bit weight for the bipolar ranges, and Table 12-2 shows the ideal voltage for each bit weight for the unipolar range.

11.2.1. Bipolar Calibration

Bipolar Range Adjustments: $\mathbf{- 5}$ to +5 Volts

Two adjustments are made to calibrate the A / D converter for the bipolar range of $+/-5$ volts. One is the offset adjustment, and the other is the full scale, or gain, adjustment. Trim pot TR4 is used to make the offset adjustment, and trim pot TR5 is used for gain adjustment. Before making these adjustments, make sure that the board is programmed for a range of ± 5 volts.

Use analog input channel 1 and set it for a gain of 1 while calibrating the board. Connect your precision voltage source to channel 1 . Set the voltage source to -1.22070 millivolts, start a conversion, and
read the resulting data. Adjust trim pot TR4 until the reading flickers between the values listed in the table below. Next, set the voltage to -4.99878 volts, and repeat the procedure, this time adjusting TR5 until the data flickers between the values in the table.

Data Values for Calibrating Bipolar 10 Volt Range (-5 to +5 volts)						
	Offset (TR4)				Converter Gain (TR5)	
Input Voltage $=\mathbf{- 4 . 9 9 8 7 8 V}$						

Bipolar Range Adjustments: $\mathbf{- 1 0}$ to +10 Volts

To adjust the bipolar 20-volt range (-10 to +10 volts), program the board for ± 10 volt input range. Then, set the input voltage to +5.0000 volts and adjust TR2 until the output matches the data in the table below.

Data Value for Calibrating Bipolar 20 Volt Range (-10 to +10 volts)	
	TR2 Input Voltage $=+5.0000 \mathrm{~V}$
A/D Converted Data	010000000000

Below is a table listing the ideal input voltage for each bit weight for the bipolar ranges.

Table 12-1 A/D Converter Bit Weights, Bipolar					
SIGN	A/D Bit Weight			Ideal Input Voltage (millivolts)	
				-5 to +5 Volts	-10 to +10 Volts
1	1111	1111	1111	-2.44	-4.88
1	1000	0000	0000	-5000.00	-10000.00
0	0100	0000	0000	+2500.00	+5000.00
0	0010	0000	0000	+1250.00	+2500.00
0	0001	0000	0000	+625.00	+1250.00
0	0000	1000	0000	+312.50	+625.00
0	0000	0100	0000	+156.25	+312.50
0	0000	0010	0000	+78.13	+156.25
0	0000	0001	0000	+39.06	+78.13
0	0000	0000	1000	+19.53	+39.06
0	0000	0000	0100	+9.77	+19.53
0	0000	0000	0010	+4.88	+9.77
0	0000	0000	0001	+2.44	+4.88
0	0000	0000	0000	0.00	0.00

11.2.2. Other trim pots on the board

Do not attempt to adjust TR1 or TR3. If you adjust them, please send the board back for RMA so we can adjust the board back in. TR1 is the common mode gain adjustment and TR3 is the common mode offset adjustment. These settings are very sensitive and should not be adjusted by the end user.

11.2.3. Unipolar Calibration

One adjustment is made to calibrate the A / D converter for the unipolar range of 0 to +10 volts. Trim pot TR6 is used to make the offset adjustment. This calibration procedure is performed with the module programmed for a 0 to +10 volt input range. Before making these adjustments, make sure that the module is programmed properly and has been calibrated for the bipolar ranges.

Use analog input channel 1 and set it for a gain of 1 while calibrating the board. Connect your precision voltage source to channel 1. Set the voltage source to +1.22070 millivolts, start a conversion, and read the resulting data. Adjust trim pot TR6 until the data flickers between the values listed in the table below.

Data Values for Calibrating Unipolar 10 Volt Range $(0$ to +10 volts)	
	Offset (TR6)
	Input Voltage =+1.22070 mV
	$0000 \quad 0000 \quad 0000$
A/D Converted Data	$0000 \quad 0000 \quad 0001$

Below is a table listing the ideal input voltage for each bit weight for the unipolar range.

Table 12-2 A/D Converter Bit Weights, Unipolar			
	A/D Bit Weight		Ideal Input Voltage (millivolts)
SIGN			0 to +10 Volts
0	1111	11111111	+9997.6
0	1000	00000000	+5000.0
0	0100	00000000	+2500.0
0	0010	00000000	+1250.0
0	0001	00000000	+625.00
0	0000	10000000	+312.50
0	0000	01000000	+156.25
0	0000	00100000	+78.125
0	0000	00010000	+39.063
0	0000	00001000	+19.531
0	0000	00000100	+9.7656
0	0000	00000010	+4.8828
0	0000	00000001	+2.4414
0	0000	00000000	0

11.2.4. Gain Adjustment

Should you find it necessary to check any of the programmable gain settings, the following table will show the proper trim pot to adjust. If the gain of One calibration is off, all the other gains will also be off, so make sure gain of One is properly adjusted first.

Set your mode to either unipolar or bipolar and input the highest voltage your mode requires. i.e. 10 V or 20 V . What this step does is accentuate any gain errors present. The following trimpots should already be very close to accurate, so make small adjustments.

Trimpots for Calibrating Gains	
Gain	Trimpot
x 2	TR7
x 4	TR8
x 8	TR9
x 16	TR10
x 32	TR11
x 64	TR12
x 128	TR13

11.3. PCI4520/DM7520 D/A Calibration

The D/A circuit require no calibration for the 0 to +5 and ± 5 volts ranges. The following paragraph describes the calibration procedure for the 0 to +10 and ± 10 volt ranges.

To calibrate for the 0 to +10 and ± 10 volt ranges, program the DAC outputs for a 0 to +10 volt range. Now program the D/A outputs with a digital value of 2048 . The ideal D/A output value for a code of 2048 is +5.000 volts. Connect a voltmeter to the D/A outputs and adjust TR14 for D/A1 and TR15 for D/A2 until 5.000 volts is read on the meter.

The following tables show the ideal output voltage per bit weight for unipolar,

Unipolar $\mathbf{D} / \mathbf{A ~ B i t ~ W e i g h t ~}$	Ideal Output Voltage (millivolts)	
	$\mathbf{0}$ to +5 Volts	$\mathbf{0}$ to +10 Volts
4095	+4998.78	+9997.56
2048	+2500.00	+5000.00
1024	+1250.00	+2500.00
512	+625.00	+1250.00
256	+312.50	+625.00
128	+156.25	+312.50
64	+78.13	+156.25
32	+39.06	+78.13
16	+19.53	+39.06
8	+9.77	+19.53
4	+4.88	+9.77
2	+2.44	+4.88
1	+1.22	+2.44
0	0.00	0.00

and bipolar ranges.

Bipolar D/A Bit Weight	Ideal Output Voltage (millivolts)	
	-5 to +5 Volts	-10 to +10 Volts
2047	+4997.56	+9995.12
1024	+2500.00	+5000.00
512	+1250.00	+2500.00
256	+625.00	+1250.00
128	+312.50	+625.00
64	+156.25	+312.50
32	+78.13	+156.25
16	+39.06	+78.13
8	+19.53	+39.06
4	+9.77	+19.53
2	+4.88	+9.77
1	+2.44	+4.88
0	0.00	0.00
-1	-2.44	-4.88
-2	-4.88	-9.77
-4	-9.77	-19.53
-8	-19.53	-39.06
-16	-39.06	-78.13
-32	-78.13	-156.25
-64	-156.25	-312.50
-128	-312.50	-625.00
-256	-625.00	-1250.00
-512	-1250.00	-2500.00
-1024	-2500.00	-5000.00
-2048	-5000.00	-10000.00

12. On-board DSP (SDM7540/8540 only)

The SDM7540/8540 dataModule has an on-board DSP which helps the host CPU during the following processes:

- Auto-calibration
- Etc.

The DSP is seamless, and the user does not need to program it to use auto-calibration.
The simplified block diagram shows the DSP connectivity to the system on the Figure 12.1.

Figure 12.1 SDM Block Diagram

13. Specifications

Typical @ 25 C.

13.1. Computer Interface

IBM PC/AT - PC/104plus 5V/3V -Universal 32bit PCI Bus master or target only device. Two memory mapped address area for configuration, mode control, data transfer and timer-counter, digital I/O area. The data transfer area is burst accessed for fast data transfer. The onboard two DMA controllers can generate burst cycles. The maximum data transfer rate in burst mode is $16 \mathrm{Msample} / \mathrm{s}$

13.2. Analog Input circuitry

Up to 8 Differential 8 SE with dedicate ground, 16 SE inputs Ground or non ground referenced, software selectable

Input impedance, each channel
Gains, Software selectable
Gain error
Input ranges
Over voltage protection
Common mode input voltage
Channel scanning error (Gain=1):
Scanning Rate (kHz)
10.. 500

600
700
800
900
1000
1250
>10 MOhm
$1,2,4,8,16,32,64,128$ (board dependent)
0.05%, typ. max 0.1%
$+/-5,+/-10$, or $0 . .10 \mathrm{~V}$
$+/-15 \mathrm{~V}$ max.
+/-10V max.

Scanning error (\% of +/-full scale)
0.0000 \%
0.05% max.
0.075% max.
0.25% max.
0.4% max.
0.45% max.
1% max.

13.3. A/D Converter

Type
Resolution
Linearity error
Sampling Rate
-3 dB bandwidth (for undersampling application)
11 effective bit bandwidth (for undersampling application)

Successive approximation
12bit ($2.44 \mathrm{mV} / 4.88 \mathrm{mV}$)
+/-1 LSB max. +/-0.3 LSB typ.
1.25 MHz max
4.2 MHz
2.5 MHz

13.4. A/D Sample Buffer

FIFO size
$1 \mathrm{~K} / 8 \mathrm{~K} * 16 \mathrm{bits}$

13.5. Channel Gain table

1024*24bits

13.6. Clocks and Counters

Based on

13.7. Digital I/O

Input Output type
Number of lines
Isource
Isink
Input termination
Output termination

13.8. D/A Converter and D/A circuitry

Analog outputs
Resolution
Output ranges
Relative accuracy
Full-scale accuracy
Non-linearity
Settling time
Output current
Short circuit time at the external I/O connector

13.9. D/A Sample Buffer

FIFO size (each channel)

TTL compatible 8bit bit-programmable, 8bit byte programmable $-8 \mathrm{~mA}$
8 mA
10 kOhm up to +5 V
10 Ohm series resistor

2 channels
12bit
$+/-5 \mathrm{~V},+/-10 \mathrm{~V}, 0 . .5 \mathrm{~V}, 0 . .10 \mathrm{~V}$
$+/-1 L S B$ max.
+/-5LSB max
+/-1LSB max.
5us typ.
$5 m A$ max.
unlimited
$1 \mathrm{~K} / 8 \mathrm{~K} * 16$ bits

Appendix A - The PCI Configuration Registers, Local Configuration Registers, Runtime Registers, DMA registers, Local Address Space 0 and 1

The first part of the Appendix shows the maps of all register areas.
PCI Configuration Registers:

Configuratio n Address Offset	$\overline{\mathrm{PCI}}$ Writable	Byte3	Byte2	Byte 1	Byte0
00h	No	Device Identification		Vendor Identification	
04h	Yes	Status		Command	
08h	No	Class Code			Revision
0Ch	$\begin{gathered} \text { Yes } \\ (7 . .0) \\ \hline \end{gathered}$	BIST	Header Type	PCI Latency Timer	Cache Line Size
10h	Yes	PCI Base Address 0 for Memory Mapped Local Configuration Registers PCIBAR0			
14h	Yes	PCI Base Address 1 for I/O Mapped Local Configuration Registers PCIBAR1			
18h	Yes	PCI Base Address 2 for Local Address Space 0 (LAS0)			
1 Ch	Yes	PCI Base Address 3 for Local Address Space 1 (LAS1)			
20h	Yes	Reserved			
24h	Yes	Reserved			
28h	No	Reserved			
2 Ch	No	Subsystem ID		Subsystem Vendor ID	
30h	Yes	PCI Base Address for Local Expansion ROM			
34h	No	Reserved			
38h	No	Reserved			
3Ch	Yes(7..0)	Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line

Local Configuration Registers:

PCI Address Offset from Local Configuration Registers Base Address	PCI and Serial EEPROM Writable	To ensure software compatibility with other versions of the PCI9080/9056 family and to ensure compatibility with future enhancements, write 0 to all unused bits.
00h	Yes	LAS0RR - Range for PCI-to-Local Address Space 0
04 h	Yes	LAS0BA - Local Base Address (Remap) for PCI-to-Local Address Space 0
08 h	Yes	MARBR - Mode/Arbitration Register
0 Ch	Yes	BIGEND - Big/Little Endian Description Register
10 h	Yes	EROMRR - Range for Expansion ROM
14 h	Yes	EROMBA - Local Base Address (Remap) for PCI to ROM
18 h	Yes	LBRD0 - Local Address Space 0 Bus Region Description Register
1 Ch	Yes	DMRR - Local Range Register for Direct Master to PCI
20 h	Yes	DMLBAM - Local Base Address Register for Direct Master to PCI memory
24 h	Yes	DMLBAI - Local Base Address Register for Direct Master to PCI IO/CFG
28 h	Yes	DMPBAM - PCI Base Address Register for Direct Master to PCI memory
DCh	Yes	DMCFGA - PCI Configuration Address Reg. for Direct Master to PCI IO/CFG
F0h	Yes	LAS1RR - Range for PCI-to-Local Address Space 1
F4h	Yes	LAS1BA - Local Base Address (Remap) for PCI-to-Local Address Space 0
F8h	Yes	LBRD1 - Local Address Space 1 Bus Region Description Register

Runtime Registers:

PCI (Offset from Base Address)	$\overline{\mathrm{PCI}}$ Writable	Serial EEPROM Writable	To ensure software compatibility with other versions of the PCI9080/9056 family and to ensure compatibility with future enhancements, write 0 to all unused bits.
40h	Yes	Yes	Mailbox Register 0 (see Note)
44h	Yes	Yes	Mailbox Register 1 (see Note)
48h	Yes	No	Mailbox Register 2
4Ch	Yes	No	Mailbox Register 3
50h	Yes	No	Mailbox Register 4
54h	Yes	No	Mailbox Register 5
58h	Yes	No	Mailbox Register 6
5C	Yes	No	Mailbox Register 7
60h	Yes	No	PCI-to-Local Doorbell Register
64h	Yes	No	Local-to-PCI Doorbell Register
68h	Yes	No	Interrupt Control / Status
6 Ch	Yes	No	Serial EEPROM Control, PCI Command Codes, User I/O Control, Init Control
70h	No	No	Device ID
74h	No	No	Unused
78h	Yes	No	Mailbox Register 0 (see Note)
7Ch	Yes	No	Mailbox Register 1 (see Note)

Note: Mailbox registers 0 and 1 are always accessible at addresses $78 \mathrm{~h} / \mathrm{C} 0 \mathrm{~h}$ and $7 \mathrm{Ch} / \mathrm{C} 4$. When the I 2 O feature is disabled (QSR[0]=0), Mailbox registers 0 and 1 are also accessible at PCI Addresses 40h and 44h for PCI9060 compatibility. When the I2O feature is enabled, the Inbound and Outbound Queue pointers are accessed at addresses 40 h and 44 h , replacing the Mailbox registers in PCI Address space.

DMA Registers:

PCI (Offset from PCIBAR0 Base Address)	Local Access (Offset from Chip Select Address)	To ensure software compatibility with other versions of the PCI9080/9056 family and to ensure compatibility with future enhancements, write 0 to all unused bits.			PCI/ Local Writable	Serial EEPROM Writable
80h	100h	DMA Ch 0 Mode			Y	N
84h	104h	DMA Ch 0 PCI Address			Y	N
88h	108h	DMA Ch 0 Local Address			Y	N
8Ch	10Ch	DMA Ch 0 Transfer Byte Count			Y	N
90h	110h	DMA Ch 0 Descriptor Pointer			Y	N
94h	114h	DMA Ch 1 Mode			Y	N
98h	118h	DMA Ch 1 PCI Address			Y	N
9 Ch	11 Ch	DMA Ch 1 Local Address			Y	N
A0h	120h	DMA Ch 1 Transfer Byte Count			Y	N
A4h	124h	DMA Ch 1 Descriptor Pointer			Y	N
A8h	128h	Reserved	DMA Channel1 Command/ Status Register	DMA Channel0 Command/ Status Register	Y	N
ACh	12Ch	Mode/Arbitration Register			Y	N
B0h	130h	DMA Threshold Register			Y	N

DMA	: currently 16 Words
LASO	: currently 512 LWords

Local Bus Memory Map

Host Side Local Bus address ranges:

Absolute Address On Local bus	Size	Description
0x0000 0000	256M Lwords	LAS0
0x0FFF FFFF		reserved
0x1000 0000		LAS1 FIFO space
0x3FFF FFFF		
0x4000 0000 0x403F FFFF	4M Word	

LAS0 register area:

LAS0 address offset	LAS0 Description
$0 \times 000-0 \times 0 \mathrm{FF}$	Runtime Area
$0 \times 100-0 \times 1 \mathrm{FF}$	Setup Area

Runtime Area of LAS0:

Read Function	Write Function	Local Address Space 0 Offset	Block Descriptions
	reserved	000h	D/A, A/D sampling runtime registers
reserved	reserved	004h	
Read User Inputs	Write User Outputs	008h	
Software DAC clock start	Software DAC clock stop	00 Ch	
Read FIFO Status	Software A/D Start	010h	
reserved	Software D/A1 Update	014h	
reserved	Software D/A2 Update	018h	
reserved	reserved	01Ch	
reserved	reserved	020h	
reserved	Software Simultaneous D/A1 and D/A2 Update	024h	
Software Pacer Start	Software Pacer Stop	028h	
Read Timer Counters Status	Software high-speed input Sample	02 Ch	
Read Interrupt Status	Write Interrupt Enable Mask Register	030h	
Clear Interrupt set by the Clear Mask	Set Interrupt Clear Mask	034h	
Read Interrupt Overrun	Clear Interrupt Overrun	038h	
reserved	Register reserved	03Ch	
Read Pacer Clock Counter value (24 bit)	Load count in Pacer Clock Counter (24 bit)	040h	Timer Counter Runtime registers

The LAS1 Register Area:

Read Function	Write Function	Local Address Space 1 Offset
Read A/D FIFO	-	0 h $(16-\mathrm{bit})$
Read High Speed Digital Input FIFO	-	4 h $(16-\mathrm{bit})$
-	Write D/A1 FIFO	8 h $(16-\mathrm{bit})$
-	Write D/A2 FIFO	Ch $(16-\mathrm{bit})$

DSP Memory map

000000	Data	Program
	M0 vector $32 * 32$	
000040	$\begin{gathered} \text { M0 SARAM } \\ 1 \mathrm{~K} * 16 \end{gathered}$	
0004	M1 SARAM vector$1 \mathrm{~K}^{*} 16$	
000800	$\begin{gathered} \text { Peripheral Frame } 0 \\ 2 \mathrm{~K} * 16 \end{gathered}$	Reserved
00 0D00	PIE vector RAM $256 * 16$	
00 0E00	Reserved	
002000	Zone0/1-32 bit wide (LAS0) Setup/Runtime	
004000	Zone0/1-16 bit wide (LAS1) FIFOs	
005000	Reserved	
006000	Peripheral Frame 1 $4 \mathrm{~K} * 16$	Reserved
007000	Peripheral Frame 2 $4 \mathrm{~K} * 16$	
008000	L0 SARAM vector $4 \mathrm{~K} * 16$	
009000	L1 SARAM vector $4 \mathrm{~K}^{*} 16$	
00 A000	Reserved	
080000	Reserved	
100000	Reserved	
180000	Reserved	
3 Fxxxx	Boot from DSP Flash (0x7FF6)—JP7 installed / RESERVED- without Jumper installed	

A1. PCI Configuration Registers

The PCI configuration registers can be accessed by PCI BIOS calls. The meaning of the PCI configuration register is on the Table A1.2. If You use the board via RTD's software driver you do not have any doing with this area.

Configuration Address Offset	PCI Writable	Byte3	Byte2	Byte 1	Byte0
00h	No	Device Identification		Vendor Identification	
04h	Yes	Status		Command	
08h	No	Class Code			Revision
0Ch	$\begin{gathered} \text { Yes } \\ (7 . .0) \end{gathered}$	BIST	Header Type	PCI Latency Timer	Cache Line Size
10h	Yes	PCI Base Address 0 for Memory Mapped Local Configuration Registers PCIBAR0			
14h	Yes	PCI Base Address 1 for I/O Mapped Local Configuration Registers PCIBAR1			
18h	Yes	PCI Base Address 2 for Local Address Space 0 (LAS0)			
1Ch	Yes	PCI Base Address 3 for Local Address Space 1 (LAS1)			
20h	Yes	Reserved			
24h	Yes	Reserved			
28h	No	Reserved			
2Ch	No	Subsystem ID		Subsystem Vendor ID	
30h	Yes	PCI Base Address for Local Expansion ROM			
34h	No	Reserved			
38h	No	Reserved			
3Ch	Yes(7..0)	Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line

Table A.1.1.
The content of the registers are described on the Table A.1.2

Field	Contents	Comment
Vendor Identification	1435h	Value Assigned to RTD Inc. by the PCI Special Interest Group
Device Identification	4520/7520/7540h	Type number of the Board
Class Code	1180h	Data acquisition controller
Cache Line Size	00h	
PCI Latency Timer	00h	
Header Type	00h	Single Function PCI Device
BIST	00h	The Built In Self Test is not Supported
PCI Base Address 0 for Memory Mapped Local Configuration Registers	Assigned by the PCI BIOS	Controls the operation of local system
PCI Base Address 1 for I/O Mapped Local Configuration Registers	Assigned by the PCI BIOS	Controls the operation of local system
PCI Base Address 2 for Local Address Space 0 (LAS0)	Assigned by the PCI BIOS	LAS0 is the base address of the configuration/setup area and Timer/Counter, Digital I/O chip of PCI4520/DM7520/SDM7540/8540
PCI Base Address 3 for Local Address Space 1 (LAS1)	Assigned by the PCI BIOS	LAS1 is the base address of the A/D, D/A, and High-Speed Digital Input data transfer area of PCI4520/DM7520/SDM7540/8540
Subsystem ID	9080/9056h	Depends on type of PLX chip
Subsystem Vendor ID	10B5h	Vendor ID for PLX
PCI Base Address for Local Expansion ROM	00000000h	No external BIOS
Interrupt Line	0xh	Interrupt Line Assigned by the BIOS
Interrupt Pin	01h	INTA\# Interrupt
Min_Gnt	00h	
Max_Lat	00h	

Table A.1.2.

31	28	27	24	23	20	19	16	15

45201435
A.1.2. PCICCR - Class Code (PCI CFG offset:09- 0B, EEPROM offset:04)

31	28	27	24	23	20	19	16	15

FF000000
A.1.3. PCICLSR, PCI LTR, PCI HTR, PCIIPR PCIILR - (PCI CFG offset:0C.. 0E, 3D, 3C, EEPROM offset:08)

31	28	27	24	23	20	19	16	15	12
11	8	7	4	3	0				
0000	0000	0000	0000	0000	0001	0000	0000		
0	0	0	0	0	1	0	0		

00000100
A.1.4. PCISVID - PCI Subsystem Vendor ID (PCI CFG offset:2C, EEPROM offset:44)

31	28	27	24	23	20	19	16	15	12
11	8	7	4	3	0				
1001	0000	1000	0000	0001	0000	1011	0101		
9	0	8	0	1	0		B	5	

9080/905610B5
A.1.5. PEROMBA - Expansion ROM PCI Base Address Register(PCI CFG offset:30, EEPROM offset:54)

31	28	27	24	23	20	19	16	15	12
11	8	7	4	3	0				
0000	0000	0000	0000	0000	0000	0000	0000		
0	0	0	0	0	0		0	0	

00000000

A.2. Local Configuration Registers

PCI Address Offset from Local Configuration Registers Base Address	PCI and Serial Writable Wram	
00 h	Yes	LAS0RR - Range for PCI-to-Local Address Space 0
04 h	Yes	LAS0BA - Local Base Address (Remap) for PCI-to-Local Address Space 0
08 h	Yes	MARBR - Mode/Arbitration Register
0 h	Yes	BIGEND - Big/Little Endian Description Register
10 h	Yes	EROMRR - Range for Expansion ROM
14 h	Yes	EROMBA - Local Base Address (Remap) for PCI to ROM
18 h	Yes	LBRD0 - Local Address Space 0 Bus Region Description Register
1 h	Yes	DMRR - Local Range Register for Direct Master to PCI
20 h	Yes	DMLBAM - Local Base Address Register for Direct Master to PCI memory
24 h	Yes	DMLBAI - Local Base Address Register for Direct Master to PCI IO/CFG
28 h	Yes	DMPBAM - PCI Base Address Register for Direct Master to PCI memory
2 Ch	Yes	DMCFGA - PCI Configuration Address Reg. for Direct Master to PCI IO/CFG
F0h	Yes	LAS1RR - Range for PCI-to-Local Address Space 1
F4h	Yes	LAS1BA - Local Base Address (Remap) for PCI-to-Local Address Space 0
F8h	Yes	LBRD1 - Local Address Space 1 Bus Region Description Register

Table 4.2.1.

A.2.1. Range for PCI-to-Local Address Space 0 Register (LAS0RR, PCI:00h, EEPROM offset: 14)

The Local Address Space 0 (LASO) is a 32 bit wide, 512 byte long Memory-mapped area with zero Wait states without burst access.

31	28	27	24	23	20	19	16	15	12
11	11	8	7	4	3	0			
1111	1111	1111	1111	1111	1110	0000	0000		
F	F	F	F	F	E		0	0	

FFFFFE00

bit 0: 1 Memory Space Indicator
bit 2..1: 00 Locate anywhere in 32 bit PCI address space
bit 3: 0 - No prefetch
bit 31.. 4: Specifies PCI address bits used to decode PCI access to local bus Space Each of the bits correspond to an address bit. Bit 31 corresponds to address bit 31 . A value of 1 indicates the bits should be included in decode. Write a value of 0 to all others.

A.2.2 Local Base Address (Remap) for PCI-to-Local Address Space 0 Register (LAS0BA, PCI: 04, EEPROM offset: 18)

The Local Address Space 0 (LAS0) is a 16 bit wide, 32 byte long I/O area without Wait states, without burst access.

31	28	27	24	23	20	19	16	15	12
11	8	7	4	3	0				
0000	0000	0000	0000	0000	0000	0000	0001		
0	0	0	0	0	0		0	1	

00000001
bit 0: 1 Space 0 enable. A value of 1 enables decode of PCI Address for direct slave access to local space0
bit 1: Unused 0
bit 3.. 2: Not used
bit 31.. 4: The bits in this register replace the PCI address bits used in decode as the local address bits.

A.2.3 Mode/Arbitration Register (MARBR, PCI: 08, EEPROM offset: 1C)

31	28	27	24	23	20	19	16	15	12
11	8	7	4	3	0				
0000	0000	0010	0000	0000	0000	0000	0000		
0	0	2	0	0	0	0	0		

00200000
bit 7:0: Local Bus Latency Timer. Number of Local Bus Clock cycles before de-asserting HOLD and releasing the Local Bus. Also used with bit 27 to delay BREQ input to give up the Local Bus only when this timer expires.
bit 15:8: Local Bus Pause Timer. Number of Local Bus Clock cycles before reasserting HOLD after releasing the Local Bus.
Note: Applicable only to DMA operation.
bit 16 Local Bus Latency Timer Enable. Value of 1 enables latency timer. bit 17 Local Bus Pause Timer Enable. Value of 1 enables pause timer.
bit 18 Local Bus BREQ Enable. Value of 1 enables Local Bus BREQ input. When BREQ input is active, the PCI9080/9056 de-asserts HOLD and releases Local Bus.
bit 20:19 DMA Channel Priority. Value of 00 indicates rotational priority scheme. Value of 01 indicates Channel 0 has priority. Value of 10 indicates Channel 1 has priority. Value of 11 is reserved.
bit 21 Local Bus Direct Slave Give up Bus Mode. When set to 1, the PCI9080/9056 de-asserts HOLD and releases the Local Bus when the Direct Slave Write FIFO becomes empty during a Direct Slave Write or when the Direct Slave Read FIFO becomes full during a Direct Slave Read.
bit 22 Direct Slave LLOCKo\# Enable. Value of 1 enables PCI Direct Slave locked sequences. Value of 0 disables Direct Slave locked sequences.
bit 23 PCI Request Mode. Value of 1 causes the PCI9080/9056 to de-assert REQ when it asserts FRAME during a Master cycle. Value of 0 causes the PCI9080/9056 to leave REQ asserted for the entire Bus Master cycle.
bit 24 PCI Specification v2.1 Mode. When set to 1, the PCI9080/9056 operates in Delayed Transaction mode for Direct Slave Reads. The PCI9080/9056 issues a Retry and prefetches Read data.
bit 25 PCI Read No Write Mode. Value of 1 forces Retry on Writes if Read is pending. Value of 0 bit allows Writes to occur while Read is pending.
bit 26 PCI Read with Write Flush Mode. Value of 1 submits request to flush pending a Read cycle if a Write cycle is detected. Value of 0 submits request to not effect pending Reads when a Write cycle occurs (PCI Specification v2.1 compatible).
bit 27 Gate Local Bus Latency Timer with BREQ. If set to 0, the PCI9080/9056 gives up the Local Bus during Direct Slave or DMA transfer after the current cycle (if enabled and BREQ is sampled). If set to 1 , the PCI9080/9056 gives up the Local Bus only if BREQ is sampled and the Local Bus Latency Timer is enabled and expired during a Direct Slave or DMA transfer.
bit 28 PCI Read No Flush Mode. Value of 1 submits a request to not flush the Read FIFO if a PCI Read cycle completes (Read Ahead mode). Value of 0 submits a request to flush the Read FIFO if a PCI Read cycle completes.
bit 29 If set to 0 , reads from PCI Configuration register address 00 h and returns Device ID and Vendor ID. If set to 1, reads from PCI Configuration Register address 00h and returns Subsystem ID and Subsystem Vendor ID.
bit 31:30 Reserved.

A.2.4 Big/Little Endian Descriptor Register (BIGEND, PCI:0Ch, EEPROM offset: 20h)

3128	$27 \quad 24$	$23 \quad 20$	1916	1512	118	74	30
0000	0000	0000	0000	0000	0000	0000	0000
0	0	0	0	0	0	0	0

00000000
bit 0: Configuration Register Big Endian Mode. Value of 1 specifies use of Big Endian data ordering for Local accesses to the Configuration registers. Value of 0 specifies Little Endian ordering. Big Endian mode can be specified for Configuration Register accesses by asserting BIGEND\# pin during Address phase of access.
bit 1: Direct Master Big Endian Mode. Value of 1 specifies use of Big Endian data ordering for Direct Master accesses. Value of 0 specifies Little Endian ordering. Big Endian mode can be specified for Direct Master accesses by asserting the BIGEND\# input pin during Address phase of access.
bit 2: Direct Slave Address Space 0 Big Endian Mode. Value of 1 specifies use of Big Endian data ordering for Direct Slave accesses to Local Address Space 0. Value of 0 specifies Little Endian ordering. bit 3: Direct Slave Address Expansion ROM 0 Big Endian Mode. Value of 1 specifies use of Big Endian data ordering for Direct Slave accesses to Expansion ROM. Value of 0 specifies Little Endian ordering. bit 4: Big Endian Byte Lane Mode. Value of 1 specifies that in Big Endian mode, use byte lanes [31:16] for 16-bit Local Bus and byte lanes [31:24] for 8-bit Local Bus. Value of 0 specifies that in Big Endian mode, byte lanes [15:0] be used for 16-bit Local Bus and byte lanes [7:0] for 8-bit Local Bus.
bit 5: Direct Slave Address Space 1 Big Endian Mode. Value of 1 specifies use of Big Endian data ordering for Direct Slave accesses to Local Address Space 1. Value of 0 specifies Little Endian ordering. bit 6: DMA Channel 1 Big Endian Mode. Value of 1 specifies use of Big Endian data ordering for DMA Channel 1 accesses to the Local Address Space. Value of 0 specifies Little Endian ordering.
bit 7: DMA Channel 0 Big Endian Mode. Value of 1 specifies use of Big Endian data ordering for DMA Channel 0 accesses to the Local Address Space. Value of 0 specifies Little Endian ordering. bit 31:8: Reserved.

A.2.5 Expansion ROM Range Register (EROMRR, PCI:10h, EEPROM offset: 24h)

31	28	27	24	23	20	19	16	15	12
11	8	7	4	3	0				
0000	0000	0000	0000	0000	0000	0000	0000		
0	0	0	0	0	0	0	0		

00000000
bit 10:0: Reserved.
bit 31:11: Specifies which PCI Address bits to use for decoding PCI-to-Local Bus Expansion ROM. Each bit corresponds to a PCI Address bit. Bit 31 corresponds to Address bit 31. Write 1 to all bits to be included in the decode and 0 to all other bits (used in conjunction with PCI Configuration register 30h). Default is 64 KB.
Note: Range (not Range register) must be a power of 2. "Range register value" is the inverse of range.

A.2.6 Expansion ROM Local Base Address (Remap) Register and BREQo Control (EROMBA, PCI:14h, EEPROM offset: 28h)

31	28	27	24	23	20	19	16	15	12	11
0000	0000	0000	0000	0000	0000	0000	0000			
0	0	0	0	0	0	0	0			

bit 3:0: Direct Slave BREQo (Backoff Request Out) Delay Clocks. Number of Local Bus clocks in which Direct Slave HOLD request is pending and a Local Direct Master access is in progress and not being granted the bus (LHOLDA) before asserting BREQo. Once asserted, BREQo remains asserted until the PCI9080/9056 receives LHOLDA (LSB = 8 or 64 clocks). bit 4: Local Bus BREQo Enable. Value of 1 enables the PCI9080/9056 to assert BREQo output. 5 BREQo Timer-Resolution. Value of 1 changes LSB of the BREQo timer from 8 to 64 clocks.
bit 10:6: Reserved. Yes No 0
bit 31:11: Remap of PCI Expansion ROM Space into a Local Address Space. Remap (replace) PCI Address bits used in decode as Local Address bits.
Note: Remap Address value must be multiple of Range (not Range register).

A.2.7 Local Address Space 0/Expansion ROM Bus Region Descriptor Register (LBRD0; PCI:18h, EEPROM offset: 2Ch)

31	28	27	24	23	20	19	16	15

42000143
bit 1:0: Memory Space 0 Local Bus Width. Value of 00 indicates bus width of 8 bits. Value of 01 indicates bus width of 16 bits. Value of 10 or 11 indicates bus width of 32 bits. $S=01, J=11, C=11$
bit 5:2: Memory Space 0 Internal Wait States (data to data; 0-15 wait states).
6 Memory Space 0 Ready Input Enable. Value of 1 enables Ready input. Value of 0 disables Ready input. bit 7: Memory Space 0 BTERM\# Input Enable. Value of 1 enables BTERM\# input. Value of 0 disables BTERM\# input. If set to 0 , the PCI9080/9056 bursts four Lword maximum at a time. bit 8: Memory Space 0 Prefetch Disable. If mapped into memory space, a value of 0 enables Read prefetching. Value of 1 disables prefetching. If prefetching is disabled, the PCI9080/9056 disconnects after each memory read.
bit 9: Expansion ROM Space Prefetch Disable. Value of 0 enables Read prefetching. Value of 1 disables prefetching. If prefetching is disabled, the PCI9080/9056 disconnects after each memory read.
bit 10: Read Prefetch Count Enable. When set to 1 and memory prefetching is enabled, the PCI9080/9056 prefetches up to the number of Lwords specified in prefetch count. When set to 0, the PCI9080/9056 ignores the count and continues prefetching until terminated by PCI Bus.
bit 14:11: Prefetch Counter. Number of Lwords to prefetch during Memory Read cycles (0-15). Count of zero selects prefetch of 16 Lwords.
bit 15: Reserved.
bit 17:16: Expansion ROM Space Local Bus Width. Value of 00 indicates bus width of 8 bits. Value of 01 indicates bus width of 16 bits. Value of 10 or 11 indicates bus width of 32 bits. $\mathrm{S}=01, \mathrm{~J}=11, \mathrm{C}=11$ bit 21:18: Expansion ROM Space Internal Wait States (data to data; 0-15 wait states).
bit 22: Expansion ROM Space Ready Input Enable. Value of 1 enables Ready input. Value of 0 disables Ready input.
bit 23: Expansion ROM Space Bterm Input Enable. Value of 1 enables BTERM\# input. Value of 0 disables Bterm input. If set to 0 , the PCI9080/9056 bursts four Lword maximum at a time.
bit 24: Memory Space 0 Burst Enable. Value of 1 enables bursting. Value of 0 disables bursting. If burst is disabled, Local Bus performs continuous single cycles for Burst PCI Read/Write cycles.
bit 25: Extra Long Load from Serial EEPROM. Value of 1 loads Subsystem ID and Local Address Space 1 registers. Value of 0 indicates not to load them.
bit 26: Expansion ROM Space Burst Enable. Value of 1 enables bursting. Value of 0 disables bursting. If burst is disabled, Local Bus performs continuous single cycles for Burst PCI Read/Write cycles.
bit 27: Direct Slave PCI Write Mode. Value of 0 indicates the PCI9080/9056 should disconnect when the Direct Slave Write FIFO is full. Value of 1 indicates the PCI9080/9056 should de-assert TRDY\# when the Write FIFO is full.
bit 31:28: PCI Target Retry Delay Clocks. Contains value (multiplied by 8) of the number of PCI Bus clocks after receiving PCI -to-Local Read or Write access and not successfully completing a transfer. Only pertains to Direct Slave Writes when bit 27 is set to 1.

A.2.8 Local Range Register for Direct Master to PCI (DMRR; PCI:1Ch, EEPROM offset: 30h)

31	28	27	24	23	20	19	16	15	12
11	8	7	4	3	0				
0000	0000	0000	0000	0000	0000	0000	0000		
0	0	0	0	0		0		0	0

00000000
bit 15:0: Reserved (64 KB increments).
bit 31:16: Specifies which Local Address bits to use for decoding Local-to-PCI Bus access. Each bit corresponds to a PCI Address bit. Bit 31 corresponds to Address bit 31.Write 1 to all bits that must be included in decode and 0 to all others. Used for Direct Master Memory, I/O, or Configuration accesses. Note: Range (not Range register) must be power of 2. "Range register value" is the inverse of range.

A.2.9 Local Bus Base Address Register for Direct Master to PCI Memory (DMLBAM; PCI:20h, EEPROM offset: 34h)

31	28	27	24	23	20	19	16	15	12
11	8	7	4	3	0				
0000	0000	0000	0000	0000	0000	0000	0000		
0	0	0	0	0	0		0	0	

00000000
bit 15:0: Reserved. Yes No 0
bit 31:16: Assigns value to bits to use for decoding Local-to-PCI Memory access.
Note: Local Base Address value must be multiple of Range (not Range register).

A.2.10 Local Base Address Register for Direct Master to PCI IO/CFG (DMLBAI; PCI:24h, EEPROM offset: 38h)

31	28	27	24	23	20	19	16	15	12
11	11	7	4	3	0				
0000	0000	0000	0000	0000	0000	0000	0000		
0	0	0	0	0	0		0	0	

00000000
bit 15:0: Reserved.
bit 31:16: Assigns value to bits to use for decoding Local-to-PCI I/O or Configuration access. Used for Direct Master I/O and Configuration accesses.
Notes: Local Base Address value must be multiple of Range (not Range register). Refer to DMPBAM[13] for I/O Remap Address option.

A.2.11 PCI Base Address (Remap) Register for Direct Master to PCI Memory(DMPBAM; PCI:28h, EEPROM offset: 3Ch)

31	28	27	24	23	20	19	16	15	12
11	8	7	4	3	0				
0000	0000	0000	0000	0000	0000	0000	0000		
0	0	0	0	0	0		0	0	

00000000
bit 0: Direct Master Memory Access Enable. Value of 1 enables decode of Direct Master Memory accesses. Value of 0 disables decode of Direct Master Memory accesses.
bit 1: Direct Master I/O Access Enable. Value of 1 enables decode of Direct Master I/O accesses. Value of 0 disables decode of Direct Master I/O accesses.
bit 2: LLOCK\# Input Enable. Value of 1 enables LLOCK\# input, enabling PCI-locked sequences. Value of 0 disables LLOCK\# input.
bit 12, 3: Direct Master Read Prefetch Size control. Values:
$00=$ The PCI9080/9056 continues to prefetch Read data from the PCI Bus until the Direct Master access is finished. May result in additional four unneeded Lwords being prefetched from the PCI Bus.
$01=$ Prefetch up to four Lwords from the PCI Bus
$10=$ Prefetch up to eight Lwords from the PCI Bus
$11=$ Prefetch up to 16 Lwords from the PCI Bus
If PCI memory prefetch is not wanted, performs Direct Master Single cycle. Direct Master Burst reads must not exceed programmed limit.
bit 4: Direct Master PCI Read Mode. Value of 0 indicates the PCI9080/9056 should release PCI Bus when the Read FIFO becomes full. Value of 1 indicates the PCI9080/9056 should keep PCI Bus and de-assert
IRDY when the Read FIFO becomes full.
bit 10, 8:5: Programmable Almost Full Flag. When the number of entries in the 32-word Direct Master Write FIFO exceeds this value, output pin DMPAF\# is asserted low.
bit 9: Write and Invalidate Mode. When set to 1, the PCI9080/9056 waits for 8 or 16 Lwords to be written from the Local Bus before starting PCI access. When set, all Local Direct Master to PCI Write accesses must be 8 - or 16-Lword bursts. Use in conjunction with PCICR[4] and Section 3.6.1.9.2, "Direct Master Write and Invalidate".
bit 11: Direct Master Prefetch Limit. If set to 1, don't prefetch past 4 KB (4098 bytes) boundaries.
bit 13: I/O Remap Select. When set to 1, forces PCI Address bits [31:16] to all zeros. When set to 0, uses bits [31:16] of this register as PCI Address bits [31:16].
bit 15:14: Direct Master Write Delay. Used to delay PCI Bus request after Direct Master Burst Write cycle has started. Values:
$00=$ No delay; start cycle immediately
01 = Delay 4 PCI clocks
$10=$ Delay 8 PCI clocks
11 = Delay 16 PCI clocks
bit 31:16: Remap of Local-to-PCI Space into PCI Address Space. Remap (replace) Local Address bits used in decode as PCI Address bits. Used for Direct Master Memory and I/O accesses.
Note: Remap Address value must be multiple of Range (not Range register).

A.2.12 PCI Configuration Address Register for Direct Master to PCI IO/CFG (DMCFGA; PCI:2Ch, EEPROM offset: 40h)

31	28	27	24	23	20	19	16	15	12
11	11	7	4	3	0				
0000	0000	0000	0000	0000	0000	0000	0000		
0	0	0	0	0		0		0	0

00000000
bit 1:0: Configuration Type ($00=$ Type $0,01=$ Type 1). 0
bit 7:2: Register Number. If different register Read/Write is needed, value must be programmed and new PCI Configuration cycle must be generated.
bit 10:8: Function Number.
bit 15:11: Device Number.
bit 23:16: Bus Number.
bit 30:24: Reserved.
bit 31: Configuration Enable. Value of 1 allows Local-to-PCI I/O accesses to be converted to a PCI Configuration cycle. Parameters in this table are used to generate PCI configuration address.
Note: Refer to Configuration Cycle Generation example in Section 3.6.1.6, "CFG (PCI Configuration Type 0 or Type 1Cycles)."

A.2.13 PCI Local Address Space 1 Range Register for PCI-to-Local Bus (LAS1RR; PCI:F0h, EEPROM offset: 48h)

The Local Address Space 1 (LAS1) is a 16 bit wide, 16 byte long Memory-mapped area with zero Wait states with burst access.

31	28	27	24	23	20	19	16	15	12

FFFFFFF0
bit 0: Memory Space Indicator. Value of 0 indicates Local Address Space 1 maps into PCI memory space. Value of 1 indicates Address Space 1 maps into PCI I/O space.
bit 2:1: If mapped into memory space, encoding is as follows:
00 Locate anywhere in 32-bit PCI Address space
01 Locate below 1 MB in PCI Address space
10 Locate anywhere in 64-bit PCI Address space
11 Reserved
If mapped into I/O space, bit 1 must be set to 0 .Bit 2 is included with bits [31:3] to indicate decoding range. bit 3: If mapped into memory space, a value of 1 indicates reads are prefetchable (does not affect operation of the PCI9080/9056, but is used for system status). If mapped into I/O space, bit is included with bits [31:2] to indicate decoding range.
bit 31:4: Specifies which PCI Address bits to use for decoding PCI access to Local Bus Space 1. Each bit corresponds to a PCI Address bit. Bit 31 corresponds to Address bit 31. Write 1 to all bits that must be included in decode and 0 to all others (used in conjunction with PCI Configuration Register Ch 1). Default is 1 MB .
Notes: Range (not Range register) must be power of 2. "Range register value" is the inverse of range. User should limit all I/O spaces to 256 bytes per PCI Specification v2.1.If QSR bit 0 is set, defines PCI Base Address 0.

A.2.14 Local Address Space 1 Local Base Address (Remap) Register(LAS1BA; PCI:F4h, EEPROM offset: 4Ch)

31	28	27	24	23	20	19	16	15

40000001
bit 0: Space 1 Enable. Value of 1 enables decoding of PCI Addresses for Direct Slave access to Local Space 1. Value of 0 disables decoding. If set to 0 , PCI BIOS may not allocate (assign) base address for Space 1.
Note: Must be set to 1 for any Direct Slave access to Space 1.
bit 1: Reserved.
bit 3:2: If Local Space 1 is mapped into memory space, bits are not used. If mapped into I/O space, bit is included with bits [31:4] for remapping.
bit 31:4: Remap of PCI Address to Local Address Space 1 into a Local Address Space. Remap (replace) PCI Address bits used in decode as Local Address bits.
Note: Remap Address value must be multiple of Range (not Range register).

A.2.15 Local Address Space 1 Bus Region Descriptor Register (LBRD1; PCI:F8h, EEPROM offset: 50h)

31	28	27	24	23	20	19	16	15
000	12	11	8	7	4	3	0	
0	0000	0000	0000	0000	0001	1100	0001	
0	0	0	0	0	1		C	1

000001 C 1
bit 1:0 Memory Space 1 Local Bus Width. Value of 00 indicates bus width of 8 bits. Value of 01 indicates bus width of 16 bits. Value of 10 or 11 indicates bus width of 32 bits.
$\mathrm{J}=11$
$\mathrm{C}=11$
bit 5:2: Memory Space 1 Internal Wait States (data to data; 0-15 wait states).
bit 6: Memory Space 1 Ready Input Enable. Value of 1 enables Ready input. Value of 0 disables Ready input.
bit 7: Memory Space 1 BTERM\# Input Enable. Value of 1 enables BTERM\# input. Value of 0 disables BTERM\# input. If set to 0 , the PCI9080/9056 bursts four Lword maximum at a time.
bit 8: Memory Space 1 Burst Enable. Value of 1 enables bursting. Value of 0 disables bursting. If burst is disabled, Local Bus performs continuous single cycles for Burst PCI Read/Write cycles.
bit 9: Memory Space 1 Prefetch Disable. If mapped into memory space, value of 0 enables Read prefetching. Value of 1 disables prefetching. If prefetching is disabled, the PCI9080/9056 disconnects after each memory read.
bit 10: Read Prefetch Count Enable. When set to 1 and memory prefetching is enabled, the PCI9080/9056 prefetches up to the number of Lwords specified in prefetch count. When set to 0, the PCI9080/9056 ignores the count and continues prefetching until terminated by PCI Bus.
bit 14:11: Prefetch Counter. Number of Lwords to prefetch during memory Read cycles(0-15).
bit 31:15: Reserved.

A.3. Runtime Registers

The PLX Mailbox registers and doorbell registers are not used in PCI4520/DM7520/SDM7540/8540, there are no local processors on the board. Therefore the Mailbox Register 0 and 1 can be downloaded from serial EEPROM. The Mailbox Register 0 is used to store the Date of EEPROM content creation in Year/Month/Day format in Hex.

The Interrupt Control /Status Register is described in the Interrupt chapter.

PCI (Offset from Base Address)	PCI Writable	Serial EEPROM Writable	To ensure software compatibility with other versions of the PCI9080/9056 family and to ensure compatibility with future enhancements, write 0 to all unused bits.
40h	Yes	Yes	Mailbox Register 0 (see Note)
44h	Yes	Yes	Mailbox Register 1 (see Note)
48h	Yes	No	Mailbox Register 2 - Not used in
4Ch	Yes	No	Mailbox Register 3- Not used
50h	Yes	No	Mailbox Register 4- Not used
54h	Yes	No	Mailbox Register 5- Not used
58h	Yes	No	Mailbox Register 6- Not used
5C	Yes	No	Mailbox Register 7- Not used
60h	Yes	No	PCI-to-Local Doorbell Register
64h	Yes	No	Local-to-PCI Doorbell Register
68h	Yes	No	Interrupt Control / Status
6 Ch	Yes	No	Serial EEPROM Control, PCI Command Codes, User I/O Control, Init Control
70h	No	No	Device ID ${ }^{\text {ID }}$ Vendor ID
74h	No	No	Unused
78h	Yes	No	Mailbox Register 0 (see Note)
7 Ch	Yes	No	Mailbox Register 1 (see Note)

Note: Mailbox registers 0 and 1 are always accessible at addresses $78 \mathrm{~h} / \mathrm{C} 0 \mathrm{~h}$ and $7 \mathrm{Ch} / \mathrm{C} 4$. When the I2O feature is disabled (QSR[0]=0), Mailbox registers 0 and 1 are also accessible at PCI Addresses 40h and 44h for PCI 9060 compatibility. When the I2O feature is enabled, the Inbound and Outbound Queue pointers are accessed at addresses 40 h and 44 h , replacing the Mailbox registers in PCI Address space.

For the Interrupt Control/Status register description see the Chapter of Interrupt.
The only register described here is the Serial EEPROM Control Register.

A.3.1 Serial EEPROM Control, PCI Command Codes, User I/O Control, Init Control (CNTRL; PCI:6Ch, no EEPROM loadable)

31	28	27	24	23	20	19	16	15
000	0000	0000	0000	0111	11	8	7	4
0	0	3	0	0111	1110			
0	0	0	0	7	6		7	E

0000767E
bit 3:0: PCI Read Command Code for DMA. Sent out during DMA Read cycles.
bit 7:4: PCI Write Command Code for DMA. Sent out during DMA Write cycles.
bit 11:8: PCI Memory Read Command Code for Direct Master. Sent out during Direct Master Read cycles. bit 15:12 PCI Memory Write Command Code for Direct Master. Sent out during Direct Master Write cycles.
bit 16 General Purpose Output. Value of 1 causes USERO output to go high. Value of 0 causes USER0 output to go low. Not used on PCI4520/DM7520.
bit17 General Purpose Input. Value of 1 indicates USERI input pin is high. Value of 0 indicates USERI pin is low. Not used.
bit 23:18 Reserved.
bit 24: Serial EEPROM Clock for Local or PCI Bus Reads or Writes to Serial EEPROM. Toggling this bit generates serial EEPROM clock. (Refer to manufacturer's data sheet for particular serial EEPROM being used.)
bit 25: Serial EEPROM Chip Select. For Local or PCI Bus Reads or Writes to serial EEPROM, setting this bit to 1 provides serial EEPROM chip select.
bit 26: Write Bit to serial EEPROM. For Writes, this output bit is input to serial EEPROM Clocked into serial EEPROM by serial EEPROM clock.
bit 27: Read Serial EEPROM Data. For Reads, this input bit is output of serial EEPROM. Clocked out of serial EEPROM by serial EEPROM clock.
bit 28: Serial EEPROM Present. Value of 1 indicates serial EEPROM is present.
bit 29: Reload Configuration Registers. When set to 0, writing 1 causes the PCI9080/9056 to reload Local Configuration registers from serial EEPROM.
bit 30: PCI Adapter Software Reset. Value of 1 holds Local Bus logic in the PCI9080/9056 reset and LRESETo\# asserted. Contents of PCI Configuration registers and Shared Run Time registers are not reset. Software Reset can only be cleared from the PCI Bus. (Local Bus remains reset until this bit is cleared.) bit 31: Local Init Status. Value of 1 indicates Local Init done. Responses to PCI accesses are Retries until this bit is set. While input pin NB\# is asserted low, this bit is forced to 1.

A.4. DMA Registers

The DMA registers are described in Chapter7.

A.5. LASO Register Area

TheLAS0 Register Area is described in Chapter4.

A.6. LAS1 Register Area

TheLAS1 Register Area is described in Chapter4.

Appendix B - The PLX9080/9056 EEPROM content

The EEPROM can be programmed in an external programmer or using the Serial EEPROM Control, PCI Command Codes Register.

Serial EEPROM Offset	Value (Hex)	Description
00	$\begin{gathered} 4520, \\ 7520, \\ \text { or } \\ 7540 \end{gathered}$	Device ID (depends on type of board installed)
02	1435	Vendor ID
04	1180	PCICCR; Class Code
06	0000	PCICCR; Class Code rev.
08	0000	Maximum Latency, Minimum Grant,
0A	0100	Int Pin, Int Routing
0 C	1999	MSW of Mailbox 0 (EEPROM Content Creation Date)
0 E	0126	LSW of Mailbox 0 (EEPROM Content Creation Date)
10	0000	MSW of Mailbox 1
12	0000	LSW of Mailbox 1
14	ffff	MSW of LAS0RR; Local Address Space 0 Range - 512 byte
16	fe00	LSW of LAS0RR; Local Address Space 0 Range - 512 byte
18	0000	MSW of LASOBA; Local Address Space 0 Base Address (Re-Map)
1A	0001	LSW of LASOBA; Local Address Space 0 Base Address (Re-Map)
1C	0020	MSW of MARBR; Mode, Arbitration Register
1E	0000	LSW of MARBR; Mode, Arbitration Register
20	0000	MSW of BIGEND; Big/Little Endian Descriptor Register
22	0000	LSW of BIGEND; Big/Little Endian Descriptor Register
24	0000	MSW of EROMRR; Expansion ROM Range
26	0000	LSW of EROMRR; Expansion ROM Range
28	0000	MSW of EROMBA; Expansion ROM Base Address (ReMap)
2A	0000	LSW of EROMBA; Expansion ROM Base Address (ReMap)
2C	4200	MSW of LBRD0; Local Address Space 0 Bus Region Descriptors
2E	0143	LSW of LBRD0; Local Address Space 0 Bus Region Descriptors
30	0000	MSW of DMRR; Range Register for Direct Master To PCI
32	0000	LSW of DMRR; Range Register for Direct Master To PCI
34	0000	MSW of DMLBAM; Base Address Register for Direct Master to PCI
36	0000	LSW of DMLBAM; Base Address Register for Direct Master to PCI
38	0000	MSW of DMLBAI; Base Addr. Reg. for Direct Master to PCI IO/CFG
3A	0000	LSW of DMLBAI; Base Addr. Reg. for Direct Master to PCI IO/CFG
3C	0000	MSW of DMPBAM; PCI Base Addr. R. for Dir. Master to PCI (ReMap)
3 E	0000	MSW of DMPBAM; PCI Base Addr. R. for Dir. Master to PCI (ReMap)
40	0000	MSW of DMCFGA; PCI Conf. Addr. R. for Dir. Master to PCI IO/CFG
42	0000	LSW of DMCFGA; PCI Conf. Addr. R. for Dir. Master to PCI IO/CFG
44	$\begin{gathered} 9080 / \\ 9056 \end{gathered}$	Subsystem ID,
46	10B5	Subsystem Vendor ID
48	FFFF	MSW of LAS1RR; Local Address Space 1 Range-16 byte (FF00-16MB)
4A	FFF0	LSW of LAS1RR; Local Address Space 1 Range-16 byte (0000-16MB)
4C	4000	MSW of LAS1BA; Local Address Space 1 Base Address ReMap
4 E	0001	MSW of LAS1BA; Local Address Space 1 Base Address ReMap
50	0000	MSW of LBRD1; Local Address Space 1 Bus Region Descriptors
52	01C1	LSW of LBRD1; Local Address Space 1 Bus Region Descriptors
54	0000	MSW of PEROMBA; Expansion ROM PCI Base Address Register
56	0000	LSW of PEROMBA; Expansion ROM PCI Base Address Register

Appendix C - Differences between the PCI4520, DM7520, and SDM7540/8540 boards

1. The PCI4520 is a PCI slot board, the DM7520/SDM7540/8540 is a PC/104-Plus board. Before you use the DM7520/SDM7540/8540 you must set the rotary switch in the appropriate state before you fit your board in your PC/104-Plus system. It needs a bus master board position.
2. The DM7520/SDM7540/8540 does not have SW1 and SW2 switches, but PCI4520 has. It means that the user should terminate the differential lines externally.
3. The DM7520 has no Gain factor 64 and 128. The SDM7540/8540 has no Gain factor of 128.
4. The DM7520/SDM7540/8540 has a Master / Target only Jumper. The state of the jumper can be read (Chapter 4.1)
5. The DM7520/SDM7540/8540 has a 24-bit DAC clock with new DAC clock circuitry (Start/Stop/Free run - Firmware Ver.11).
6. The DM7520/SDM7540/8540 has a 20 MHz clock as primary pacer clock source to have finer frequency resolution of pacer clock frequency. (Firmware Ver.11)
7. The DM7520/SDM7540/8540 has an McBSP serial connection to the SPM6030/6020 board.
8. The SDM7540/8540 is an auto-calibration board with an onboard DSP (SmartCal)
9. The SDM7540/8540 has an onboard temperature sensor
10. The PCI4520 and DM7520 use the PLX 9080 PCI Interface. The SDM7540/8540 uses the PLX 9056 PCI Interface.

Limited Warranty

RTD Embedded Technologies Inc. warrants the hardware and software products it manufactures and produces to be free from defects in materials and workmanship for one year following the date of shipment from RTD Embedded Technologies Inc. This warranty is limited to the original purchaser of product and is not transferable.

During the one year warranty period, RTD Embedded Technologies Inc. will repair or replace, at its option, any defective products or parts at no additional charge, provided that the product is returned, shipping prepaid, to RTD Embedded Technologies Inc. All replaced parts and products become the property of RTD Embedded Technologies Inc. Before returning any product for repair, customers are required to contact the factory for an RMA number.

THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY PRODUCTS WHICH HAVE BEEN DAMAGED AS A RESULT OF ACCIDENT, MISUSE, ABUSE (such as: use of incorrect input voltages, improper or insufficient ventilation, failure to follow the operating instructions that are provided by RTD Embedded Technologies Inc., "acts of God" or other contingencies beyond the control of RTD Embedded Technologies Inc.), OR AS A RESULT OF SERVICE OR MODIFICATION BY ANYONE OTHER THAN RTD Embedded Technologies Inc. EXCEPT AS EXPRESSLY SET FORTH ABOVE, NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND RTD Embedded Technologies Inc. EXPRESSLY DISCLAIMS ALL WARRANTIES NOT STATED HEREIN. ALL IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES FOR MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED TO THE DURATION OF THIS WARRANTY. IN THE EVENT THE PRODUCT IS NOT FREE FROM DEFECTS AS WARRANTED ABOVE, THE PURCHASER'S SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED ABOVE. UNDER NO CIRCUMSTANCES WILL RTD Embedded Technologies Inc. BE LIABLE TO THE PURCHASER OR ANY USER FOR ANY DAMAGES, INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, EXPENSES, LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS, AND SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

RTD Embedded Technologies Inc. 103 Innovation Blvd.

State College PA 16803
USA
Our website: www.rtd.com

